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ABSTRACT

In this paper we further study links between concentration of measure in
topological transformation groups, existence of fixed points, and Ramsey-
type theorems for metric spaces. We prove that whenever the group
Iso(U) of isometries of Urysohn’s universal complete separable metric
space U, equipped with the compact-open topology, acts upon an ar-
bitrary compact space, it has a fixed point. The same is true if U is
replaced with any generalized Urysohn metric space U that is sufficiently
homogeneous. Modulo a recent theorem by Uspenskij that every topolog-
ical group embeds into a topological group of the form Iso(U), our result
implies that every topological group embeds into an extremely amenable
group (one admitting an invariant multiplicative mean on bounded right
uniformly continuous functions). By way of the proof, we show that
every topological group is approximated by finite groups in a certain
weak sense. Qur technique also results in a new proof of the extreme
amenability (fixed point on compacta property) for infinite orthogonal
groups. Going in the opposite direction, we deduce some Ramsey-type
theorems for metric subspaces of Hilbert spaces and for spherical metric
spaces from existing results on extreme amenability of infinite unitary
groups and groups of isometries of Hilbert spaces.
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1. Introduction

The concept of amenability extends from locally compact groups to arbitrary
topological groups, and an interesting observation of recent times is that un-
der such a transition the concept ‘gains in strength’ in that a number of concrete
infinite-dimensional groups of importance satisfy a reinforced version of amenabil-
ity such as locally compact groups cannot possibly have.

Definitions of amenability equivalent in the locally compact case diverge
already for some of the most common infinite-dimensional topological groups
[22]. Nevertheless, the following choice has become standard [35, 1]: call a topo-
logical group G amenable if every continuous affine action of G on a convex
compact set has a fixed point. Equivalently, there is a left invariant mean on
the space C2(G) of all bounded right uniformly continuous functions on G. This
concept is in particular given substance by the following result due to de la Harpe
[23]: a von Neumann algebra A is injective if and only if the unitary group U(A)
equipped with the ultraweak topology is amenable. (Cf. also [36].) Such results
suggest that namely the above definition and not, for example, the one calling
for an invariant mean on all bounded continuous functions on G, is the ‘proper’
choice.

In particular, a topological group G is amenable if it has a fixed point in
every compact space it acts upon. Such topological groups are said to have the
fixed point on compacta property (f.p.c.) [12], or else called extremely
amenable, in the spirit of [17] where the concept was applied to discrete semi-
groups. The condition is equivalent to the existence of a left invariant multi-
plicative mean on C3(G).

At the first sight, the latter property seems to be far too restrictive to be
observed en masse. In particular, according to a well-known theorem of Veech
[48], no locally compact group has the fixed point on compacta property. (For
discrete groups, this was previously noted in [7].) Historically the first examples
of extremely amenable groups (26, 2], difficult to construct, looked like genuine
pathologies.

Nevertheless, in recent times it was shown that a number of well-known ‘mas-
sive’ topological groups possess the fixed point on compacta property, among
them

e the unitary group U(H) (and the orthogonal group O(#H)) of an infinite-
dimensional Hilbert space with the strong operator topology {Gromov and
Milman [20]),

e the group L1(X,U(1)) of measurable maps from a non-atomic Lebesgue
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space to the circle group, equipped with the Lj-metric (Glasner [12] and
independently, unpublished, Furstenberg and B. Weiss),

e groups Homeo,(I) and Homeoy(R) of orientation-preserving homeo-
morphisms with the compact-open topology (the present author [37]),
e groups of measure-preserving automorphisms of standard sigma-finite

measure spaces with the strong topology (Giordano and the present
author [11]).

The technique used to establish the fixed point on compacta property in
the above examples has been either that of concentration of measure on high-
dimensional structures (pioneered in this context by Gromov and Milman [20]),
or else infinite Ramsey theory, as in [37].

In this article we isolate a new and vast class of topological groups with the
fixed point on compacta property: they are groups of isometries of very regular
and highly homogeneous objects, the (generalized) Urysohn metric spaces.

Universal metric spaces were introduced by Urysohn in the 20’s {43, 44] and
investigated mostly in the separable case. In particular, there is, up to an iso-
metry, only one complete separable Urysohn metric space, which we will denote
by U. For a long time Urysohn spaces remained little known outside of general
topology, and the most important advances at that period were due to Katétov
[27], who had made the structure of the space U more transparent, and Uspenskij
[45], who had proved that the group of isometries Iso(U) with the compact-
open topology forms a universal second-countable topological group. Uspenskij’s
construction was later used by Gao and Kechris [10] to deduce, among others,
the following result: every Polish topological group is the group of all isometries
of a suitable separable complete metric space. Recently the Urysohn spaces were
linked to wider issues in geometry and analysis, particularly by Vershik who has
for example shown [50] that the completion of the set of integers equipped with a
‘sufficiently random’ metric is almost surely isometric to U. A further discussion
of the space U and its links with geometry is to be found in Gromov’s book [19].

We shall prove that the group Iso(U) has the fixed point on compacta property
(Theorem 4.11), and moreover the same is true of isometry groups Iso(U) of all
sufficiently homogeneous generalized (non-separable) Urysohn spaces U (Theo-
rem 6.6). According to a recent result by Uspenskij [47], every topological group is
contained, as a subgroup, in the group of isometries of such a generalized Urysohn
space. The two results combined imply that extreme amenability is, in a sense,
ubiquitous: every topological group embeds, as a topological subgroup, into a
topological group with the fixed point on compacta property (Corollary 6.7).
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It is known since the work of de la Harpe [22] that a closed subgroup of an
amenable topological group need not be amenable, unlike in the locally compact
case. The reported results take this observation to its extreme. The possibility
of such a development was conjectured in our paper [37].

The proof of extreme amenability of the group Iso(U) applies the technique of
concentration of measure, and by way of proof we establish the following gen-
eralization of a result due to Glasner and Furstenberg-Weiss: the group of all
measurable maps from a non-atomic Lebesgue measure space to an amenable
locally compact group G, equipped with the topology of convergence in measure
(known as the Hartman-Mycielski extension of G, [25]), has the fixed point on
compacta property (Theorem 2.2). Another component of the proof is the follow-
ing, apparently new, result (Theorem 3.2): every group of isometries of a metric
space can be approximated in a certain weak sense with finite groups of isome-
tries of suitable metric spaces. In the second-countable case the result can be
interpreted as a statement on approximation of topelogical groups: every Polish
group is the limit of a net of finite groups in the space of all closed subgroups of
the group Iso(U) (Corollary 4.9).

Our methods lead to a new proof of the fixed point on compacta property
for the infinite orthogonal groups with the strong topology, which does not use
advanced geometric tools such as Gromov’s isoperimetric inequality. {Subsection
4.5)

In order to extend the result on extreme amenability to the groups of isometries
Iso(U) of generalized Urysohn metric spaces U, we recast the fixed point on
compacta property of the full isometry group of a sufficiently homogeneous metric
space X as a Ramsey-type result for the space X itself (Theorem 5.9). As a
corollary, if two metric spaces, X and Y, are both w-homogeneous and have,
up to isometry, the same finite metric subspaces, then the groups Iso(X) and
Iso(Y) have the fixed point on compacta property (or otherwise) simultaneously
(Theorem 6.5).

As another application of this technique, we show that the groups of isome-
tries of the universal discrete metric spaces [19] do not have the fixed point on
compacta property (Theorem 6.9).

The equivalence between the fixed point on compacta property of isometry
groups and Ramsey-type results for metric spaces can be exploited in the other
direction as well, and thus we deduce some ‘approximate’ Ramsey-type results
for both spherical and Euclidean metric spaces (Subsection 6.3).

ACKNOWLEDGEMENT: The investigation grew out of stimulating discussions
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2. Concentration of measure in Hartman—Mycielski groups

2.1.  Our starting point is the following result, mentioned in the Introduction.

THEOREM 2.1 (Glasner [12]; Furstenberg-B. Weiss, unpublished): The group
L,(X,U(1)) of all measurable maps from a nonatomic Lebesgue space to the circle
rotation group, equipped with the L;-metric, has the fixed point on compacta
property.

On two occasions in this article, including the proof of one of our main
theorems, we will invoke suitable modifications of the above result, and it seems
appropriate to state a far-reaching generalization of Theorem 2.1, even if we shall
never use its full power.

In the above form the result does not extend too far: suffice to consider the
additive group of the Banach space L1(X) = L,(X,R), with its wealth of contin-
uous characters. However, it is not a particular metric on the group but rather
the topology it generates that matters, and the topology generated by the L;-
metric on the group L(X,T) is that of convergence in measure. (This is true of
every Ly-metric, 1 < p < oo, on the same group.) This observation leads us to
state the following generalization of Glasner—Furstenberg—Weiss theorem.

THEOREM 2.2: Let G be an amenable locally compact group and let X be a
non-atomic Lebesgue measure space. Then the group Lo(X, G) of all measurable
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maps from X to G, equipped with the topology of convergence in measure, has
the fixed point on compacta property (is extremely amenable).

Remark 2.3: The topological groups of the form L¢(X,G), where the subscript
‘0’ stands for the topology of convergence in measure, had apparently been first
considered by Hartman and Mycielski [25], who had observed that Lo(X,G)
contains G as a topological subgroup (formed by all constant functions) and
is path-connected and locally path—connected. Later it was shown by Keesling
[28] that if G is separable metrizable, then the Hartman-Mycielski extension
Lo(X,G) is homeomorphic to the separable Hilbert space. The correspondence
G — Lo(X,G) determines a (covariant) functor from the category of all topolog-
ical groups and continuous homomorphisms to itself, and Theorem 2.2 says that
the Hartman-Mycielski functor transforms amenable locally compact groups into
extremely amenable topological groups.

The following particular case (where G = R or C) seems to be of interest.

COROLLARY 2.4: The [underlying topological group of] the topological vector
space Lo{X) of all measurable functions on a non-atomic Lebesgue measure space
X, equipped with the topology of convergence in measure, has the fixed point on
compacta property.

Remark 2.5: The above result is similar to the one from [26] where the space
Lo(X) was equipped with the topology of convergence in a suitably chosen, the
so-called pathological submeasure (a subadditive set function) on X. As a re-
sult, the abelian topological group from [26] has an even stronger property than
just extreme amenability: it admits no strongly continuous unitary representa-
tions. Notice that each of the groups of the form Lo(X,G) from Theorem 2.2
admits a faithful strongly continuous unitary representation in the Hilbert space
L2(X, L2(G)). (This extends an observation made in [12] for G = U(1).)

Our proof of Theorem 2.2 relies, similarly to that of Theorem 2.1, on the
technique of concentration of measure on high-dimensional structures. However,
the concept of a Lévy group [20, 12] becomes too narrow and has to be somewhat
extended. We believe that this extension goes sufficiently far to be of interest on
its own. (Though we find it useful, to replace metrics with uniform structures,
this is not what our generalization is about.)

2.2. If X = (X,Ux) is a uniform space, then the uniform (induced) topology
on X gives rise to a Borel structure and thus one can speak of Borel measures on
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X. The following is a straightforward adaptation of the by now classical concept
[20, 34, 33, 41, 19, 12].

Definition 2.6: Let (io) be a net of probability measures on a uniform space
(X,Ux). Say that the net (u,) has the Lévy concentration property, or
simply concentrates (in X), if whenever A, C X are Borel subsets with the
property

lin(llinf ta(Ay) >0,

one has for every entourage of the diagonal V € Ux
pa(V][As]) — 1.

(Here, as usual, V[A] = {r € X | Ja € A, (z,a) € V} denotes the V-
neighbourhood of A.)

LeMMA 2.7: Let f: X — Y be a uniformly continuous map between two uniform
spaces, and let (po) be a net of Borel measures on X. If (u,) concentrates, then
the net (f.(ite)) of push-forward measures on 'Y concentrates as well.

Let G be a group of uniform isomorphisms of a uniform space X. A compact-
ification K of X is called uniform if the corresponding mapping i: X — K is
uniformly continuous, and equivariant (in full, G-equivariant) if G acts on
K by homeomorphisms in such a way that ¢ commutes with the action. The
maximal uniform compactification of a uniform space X, known as the Samuel
compactification of X and which we denote by ¢ X, is the Gelfand space of the
commutative C*-algebra formed by all bounded uniformly continuous complex-
valued functions on X. The Samuel compactification 0 X is equivariant no matter
what the acting group G is, because every uniform homeomorphism X — X ex-
tends to a self-homeomorphism ¢ X — o¢X due to universality.

It is convenient to state explicitely the following result, which is in essence
folk’s knowledge in theory of topological transformation groups. (Cf. (33, 48]
etc.)

THEOREM 2.8: Let G be a group of uniform isomorphisms of a uniform space
X. The following conditions are equivalent.

(i) Every G-equivariant uniform compactification of X has a fixed point.

(ii) For every bounded uniformly continuous function f from X to a finite-
dimensional Euclidean space, every € > 0 and every finite collection
91,92, ---,9n € G, there is an x € X with |f(z) — f(g:x)] < ¢ for all
1=1,2,...,n.
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(iii) For every finite cover v of X, every V € Ux and every finite collection
g1,92,--.,9n € G, there is an A € vy such that

n
() Vig:Al # 0.
i=1
Proof: (i) = (ii): notice that every bounded uniformly continuous function
extends over the Samuel compactification.

(i) => (iii): choose a bounded uniformly continuous pseudometric d on X
subordinated to V (that is, d{z,y) < 1 = (z,y) € V) and apply the condition
(ii) to the function from X to RI"! whose components are distance functions
r—d(z,A), A€y, withe=1.

(iii) = (i): see [39], Proposition 2.1 (which is, in its turn, an adaptation of an
argument from Section 4 in [32]). [ |

Remark 2.9: At this point we do not concern ourselves with a topology on the
acting group G, and it may well happen that if G is a topological group acting on
the uniform space X continuously, the extension of the action to an equivariant
compactification of X is discontinuous. As an example, consider as G the unitary
group U(ly) with the strong topology, and as X the unit sphere S in I with
the metric uniformity. The action of U(l2) on the Samuel compactification of the
sphere is continuous if U(l2) is equipped with the uniform operator topology, but
not the strong one.

A subset B of a uniform space X is called uniformly open if B = V[A] for
some A C X and V € Ux.

Definition 2.10: Let us say that two nets of probability measures, (o) and
(Va), on the same uniform space X are asymptotically proximal if for every
uniformly open subset B one has

limsup |po(B) — vo(B)| < 1.
«

Remark 2.11: Two nets as above will in particular be asymptotically proximal
if lim inf, (st A vo)(X) > 0. For instance, this is so if the restrictions of s and
Vo coincide on some Borel subsets (A4,), whose measures are uniformly (in a)
bounded away from zero.

The following apparently subsumes all the previously known results of the type
(concentration of measure) = (ezistence of a fized point) 20, 32, 33, 12, 30].
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THEOREM 2.12: Let a group G act on a uniform space X = (X,U) by uniform
isomorphisms. Suppose there is a net (j,) of probability measures on X such
that

- (uq) concentrates in X,

- for every g € G the nets (o) and (g * ) are asymptotically proximal.
Then every equivariant uniform compactification of the G-space X has a fixed
point.

Remark 2.13: The second condition is a rather weak invariance-type property
for a family of measures, and its advantage is being easier to verify. If we require
all measures p, to be eventually invariant (that is, for every g € G one has
Ha = g * po for sufficiently large a) and compactly-supported, then we recover
the concept of a Lévy transformation group from [32]. The above stated theorem
allows for a unified approach to a number of previously known results, such
as a link between amenability of unitary representations and the concentration
property of unit spheres [39], which we will not be addressing here.

Proof: Let v be a finite cover of X, let V € Ux, and let g1,...,9, € G be
arbitrary. Find an entourage of the diagonal W € Ux with WoW C V. At least
one element of v, denote it by A, satisfies the property

limsup pq (4) > fy|h

By proceeding to a subnet if necessary, we may assume without loss in generality
that
lim inf pa(A4) > |y 7%
e 4

In view of the assumed concentration property of the measures (pq),
lim 1 (W[A]) = 1,
and by force of the second assumption, one has for every ¢
lirri!inf(gi * f1q ) (W[A]) > 0.

By Lemma 2.7, each of the nets of measures (g; % p1o ), ¢ = 1,2, ..., n concentrates,
and consequently
(g * 1) (W[WA]) = 1.

Since W o W C V, one has

lim o (g:V[A]) = 1.
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It is therefore possible to choose an « so large that each of the numbers
ba{g1V]A]), - .., a9 V[A]) is greater than 1 — 1/n. It follows that the inter-
section of all the translates of V[A] by elements g;, i = 1,2,...,n is non-empty,
and application of Theorem 2.8 finishes the proof. |

2.3. Recall that the right uniform structure of a topological group, U (G),
has as a basis the entourages of diagonal of the form

Vo ={(z,y) e GxG| zyle Vi,

where V runs over a neighbourhood basis of e in G. The Samuel compactification
of the right uniform space Gr = (G,Ur(G)) is a compact G-space, known as the
greatest ambit of G and denoted by S(G). (Cf. [42, 5, 1, 38].) The greatest
ambit possesses a distinguished point (the image of identity of G, which we will
still denote e), whose orbit is everywhere dense in it. This object has the following
universal property: whenever X is a compact G-space and zo € X, there is a
unique morphism of G-spaces from §(G) to X taking e to zg. It follows that a
topological group G has the fixed point on compacta property if and only if there
is a fixed point in the greatest ambit S(G).

COROLLARY 2.14: Let G be a topological group. Suppose there is a net (ug) of
probability measures on G such that, with respect to the right uniform structure
U (G),

- (pa) concentrates,

- for every g € G the nets (1, ) and (g * po) are asymptotically proximal.
Then G has the fixed point on compacta property.

Remark 2.15: A topological group G is called a Lévy group if it contains a
family of compact subgroups, directed by inclusion and having everywhere dense
union, such that the corresponding normalized Haar measures, po, concentrate
in Gp. This concept was used as means to deduce the existence of fixed points for
group actions on compacta by Gromov and Milman [20]; see also [12, 38]. Lévy
groups satisfy a stronger property than the the second assumption of Corollary
2.14: the measures y, are eventually invariant.

2.4. Let X = (X,Ux) be a uniform space. Denote by L(I, X) the collection
of all Borel-measurable maps f: I — X equipped with the uniform structure of
convergence in measure. The standard basic entourages of diagonal are of the
form

(Viel:={(f,9) € LI, X) x L(L, X): p{z € I: (f(2),9(z)) ¢ V} <¢},
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where V € Ux and ¢ > 0. This uniformity induces a topology on L(I, X'), whose
standard basic neighbourhoods of a given function f: I — X are

Vie, fl:={g € L(L, X): p{z € I: (f(x),9(z)) ¢ V} < e},

where V € Ux and ¢ > 0. (Notice that the knowledge of topology on X alone
does not suffice: to talk of convergence in measure, it is necessary to have a
uniform structure, for instance, one defined by a metric on X, or else the unique
compatible uniform structure in case X is compact.)

If G is a Hausdorff topological group, then so is L{I,G). In this case, the
standard neighbourhoods of identity are of the form

Vel ={ge L, X):p{x e L:g(z) ¢ V} < e},

where V is a neighbourhood of e¢ in G and € > 0.

Now suppose that X = (X, p) is a metric space. Let us agree on the canonical
choice of the metric generating the uniformity of convergence in measure (and
the corresponding topology) on Lo(I, X), as follows: if A > 0 is an arbitrary (but
fixed) number, then set

(2.1) mex(f,g) = inf{e > 0| p{z € I: p(f(x),9(z)) > e} < Ae}.
Such metrics for different A > 0 are all equivalent. (Cf. [19], p. 115.)

Definition 2.16: An action of a topological group G on a uniform space X =
(X,Ux) by uniform isomorphisms is called bounded {51] (or motion equicon-
tinuous [14]) if for every entourage U € Ux one can find a neighbourhood
W > eg such that for every z € X,

W .-z C Ulz].

Remarks 2.17: 1. Every bounded action is continuous. [If g € G, z € X, and
a neighbourhood O 3 g - x are arbitrary, select an U € Ux with (U o U)fz] C O
and a neighbourhood W 3 e with W -y C Ufy] for all y € X. Then W -Ulz] C
U?[z] C O]

2. The converse is not true. [For example, the standard action of the unitary
group U(ly} with the strong operator topology on the unit sphere S equipped
with the metric uniformity is continuous, but not bounded. This action becomes
bounded if U(l2) is equipped with the uniform operator topology.]

3. However, a continuous action of a topological group G on a compact space
X (equipped with the unique compatible uniformity) is always bounded. This
fact is well-known (and easily verified).
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4. The left action of a topological group G on the right uniform space G is
bounded, but in general the same is not true of the left action of G on the left
uniform space of G.

LEMMA 2.18: If a topological group G acts by isometries on a metric space X,
then the topological group Lo(I, G) acts by isometries on the metric space L(I, X)
equipped with the metric (2.1), where the action is defined pointwise:

(g f)(z) :=g(x)- f(z), g € L(L,G), f € L{I, X).

If in addition the action of G on X is bounded (for example X is compact), then
the action of Lo(I,G) on Lo(I, X) is continuous.

Proof: The first statement is self-evident. In order to establish the second claim,
it is now enough to prove that for every f € Lo(L, X) the orbit map

Lo(]I,G) 5gl——>g-f € Lo(I[,X)

is continuous. Let € > 0 be any. Using the boundedness of the original action,
choose a W 3 e such that for all z € X and w € W, p(w - z,z) < . The set
g[W, Ae/2] is a neighbourhood of g in Lg(I,G), and if g; € g[W, Ae/2] is arbitrary,
then for every z € X apart from a set of measure < Ae one has p(g(z)- f(z), g:1(x)-
f(x)) = p(f(z),w(z) - f(x)) < &, where w(z) = g(z)"lg1(x) € W for every
z € X apart from a set of measure Ae/2. This means that mey(g: - f,9- f) <¢,
establishing the continuity of the orbit map. [ |

2.5. PRrRooOF OF THEOREM 2.2. Fix a parametrization of the non-atomic
Lebesgue measure space X, that is, a measure space isomorphism I «» X. The
required net of measures on L(I,G) will be indexed by the set of all pairs of
the form (n, F), where n € Ny and F C G is a finite subset, directed as fol-
lows: (n1, F) < (ng, Fy) iff ny < ng and Fy C F;. Fix a left-invariant Haar
measure v on (. For every n, F as above use the Fglner condition and the as-
sumed amenability of the locally compact group G to choose a compact subset
K = K, r C G with the property

v(gKAK) 1
—_— < —_
v(K) n
for each g € F. Now let K™ denote the set of all functions in Lo(I, G) taking
values in K and constant on every interval of the form [i/n,(i + 1)/n), i =

0,1,...,n — 1. Topologically, K™ can be identified with the n-th power of the



Vol. 127, 2002 RAMSEY-MILMAN PHENOMENON 329

compact set K. Denote by v, r the product measure (v|x)™ normalized to one
and viewed as a probability measure on Ly(I, G) with support K™. It remains
to verify that the net of probability measures (v, r) on the topological group
Lo(L, G) satisfies the two assumptions of Corollary 2.14.

(i) The net of measures (v, r) concentrates in Lo(I, G).

The following general and powerful result, due to Talagrand ([41], p. 76 and
Prop. 2.1.1), extends the particular case of finite spaces belonging to Schechtman
[40, 34]. Let Y = (Y, X%, ) denote a probability space. Then the product mea-
sures u®", n € N, on Y™ concentrate, as n — oo, with respect to the [uniform
structure generated by the] normalized Hamming distance on Y™, given by

pf.9) = 24| i £ i}

Moreover, the {Gaussian) bounds for the rate of concentration are independent
of a particular Y, cf. loco citato. In other words, there is a family of functions
o2 [0,1] = [0, 3] (of the form a,(¢) = Ciexp(—Caen?)), independent of Y and
p and such that, whenever a measurable A C Y has the property u®"(4) > %,
one has for every € > 0

H®n(A€) > 1-an(e),

where A, = {y € Y™ p(y, A) < &}.

In view of Lemma 2.7, it is therefore enough to show that the uniform structure
induced on K™ by the Hamming-type distance p is finer than the restriction of the
right uniform structure Uy (L{X, G)) (which of course coincides with the unique
compatible uniformity on K ™). Let V be a neighbourhood of unity in G and let
€ > 0. Let f,g € K™ be arbitrary and such that p(f, g) < e. Then clearly

p{z e X | f(2)g(2)" ¢ V}) <u({z € X | f(z) # 9(x)})
=21fi] fi £ o1l
(2.2) =p(f,9) <e,

that is, (f,g) € [V;¢], establishing the claim.

(i1) For every g € Lo(I,G), the nets (v, r) and (g * vp r) are asymptotically
proximal.

Let g € Lo(X,G). By approximating g with simple functions, one can assume
without loss in generality that the set F = {g1, ..., gx} of values of g is finite, and
that for sufficiently large n, the function g is constant on each [i/n, (i + 1)/n).
Since for every g; one has v(K, pNgi - Kn r) > (1-1/n)v(Kpn r), it follows that,
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whenever n > k,
" n 1\" 1
v (K pNgi Kip) > (1- =) ==

To finish the proof, notice that the restrictions of the measures v, p = (v|g)"

and g * v, r to K p N g; - KF p coincide, and use Remark 2.11. [

3. Approximation by finite groups

3.1. The aim of this Section is to show that every (topological) group can be
approximated, albeit in a very weak sense, by finite groups. By combining the
approximation result with the extreme amenability of Hartman-Mycielski groups,
we shall later deduce the fixed point on compacta property for the isometry group
Iso(U) of the complete separable Urysohn metric space.

We will state the approximation result in a few equivalent forms. Let us say
that a metric space X is indexed by a set I if there is a surjection fx: I — X.
We will call the pair (X, fx) an indexed metric space. Let us say that two
metric spaces, X and Y, indexed with the same set I are e-isometric if for every
i, j € I the distances dx(fx (%), fx(j)) and dy (fy (i), fy (j)) differ by at most e.

LEMMA 3.1: If metric spaces X and Y indexed by a set I are e-isometric, then

X and Y can be isometrically embedded into a metric space Z in such a way
that for each i € I, dz(fx(7), fr(3)) <e.

Proof: Make the set-theoretic disjoint union Z = X UY into a weighted graph,
by joining a pair (z,y) with an edge in any of the following cases:

- z,y € X, with weight px(z,y);

- z,y € Y, with weight py (z,y);

- for some i € I, x = fx(¢) and y = fy (i), with weight .
The weighted graph Z equipped with the path metric clearly contains X and Y
as metric subspaces and satisfies the required property. |

THEOREM 3.2: Let g1, ..., g, be a finite family of isometries of a metric space X.
Then for every € > 0 and every finite collection x1, . . ., Ty, of elements of X there
exist a finite metric space X , elements &1, . ..,%n of X, and isometries g1, . .., Gn
of X such that the indexed metric spaces {g9i-z;:i=1,2,...,n,j=1,2,...,m}
and {g;-Z;:i=1,2,...,n,5=1,2,...,m} are e-isometric.

Proof: 'We will perform the proof in several simple steps.
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1. By first rescaling the metric px on X and then replacing it with min{px,1}
if necessary, we can assume without loss in generality that the values of px are
bounded by 1.

2. Without loss in generality, we may also assume that X supports the struc-
ture of an abelian group equipped with a bi-invariant metric, and g;’s are metric-
preserving group automorphisms. For instance, one can replace X with the free
abelian group A(X) on X, and extend the metric from X to a maximal invariant
metric on A(X) bounded by 1 (the so-called Graev metric, cf. [15, 46]); then
every isometry of X uniquely extends to an isometric automorphism of the metric
group A(X).

3. Let G denote a group of isometries of X generated by ¢1,...,9,. The
semidirect product group G x A(X) is equipped with the bi-invariant metric p
defined by

romy L if g #g’,
p((97 a)v (g » @ )) - {d(a7 al)7 otherwise.

[The bi-invariance of p is established through a direct calculation using the mul-
tiplication rule in the semidirect product in question:

(9,a)(h,b) = (gh,a+g-b).]

As usual, we will identify G with a subgroup of the semidirect product under the
mapping G 3 g — (g,0), and similarly A(X) is identified with a normal subgroup
of the semidirect product under the mapping A(X) > = — (eg, ). Under such
conventions, the automorphism of A(X) determined by each g € G is just g itself
considered as an isometric isomorphism of A(X):

Ya € A(X), gag™! =(g,0)(e, a)(g,o)—l
=(9,9-a)(g7%,0)
=(e,g-a)

=g-a.
In particular, for every 7, j one has
9i%39; " = g - ;.
4. Let Fy,4n denote the free group on m+n generators denoted by the symbols
91,92, -5 Gny L1y L2y v oy Tope

Denote by 7 Fp4pn = G X A(X) the homomorphism sending each generator g;
to the corresponding element of G' and each generator x; to the corresponding
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element of X C A(X). Pull the metric p back from G x A(X) to Fp, 1, by letting

p'(z,y) = p(r(x), n(y)).

The pseudometric p' is bi-invariant on F,,1,, though need not be a metric. By
force of the remark at the end of step 3, the indexed pseudometric spaces

{glz]|7'= 1727"'7n7j:1727"'7m} g (X,PX) C (A(X)ap)

and
{gzx]gq,—l [7': 172)"','"'7.7': 1727~"7m} C (Fm+n7pl)

are isometric (and thus are both metric spaces).

5. By adding to p’ an arbitrary bi-invariant metric on F,,,, normalized so as
to only slightly change the values of distances between pairs of elements g;z;g; !
(for instance, let us agree on the discrete metric taking its values in {0,£/2})), we
can assume without loss in generality that p’ is a bi-invariant metric on Fp, n,
while the indexed metric spaces {g; - z; | ¢ = 1,2,...,n,j = 1,2,...,m} and
{gizjg7t |i=1,2,...,n,5=1,2,...,m} are ¢/2-isometric.

6. Now replace the metric p’ with the maximal among all bi-invariant metrics
on Fy,n that coincide with p’ on the set F,(,?J)rﬂ
<3

To prove the existence of such a metric, say d, denote by M the family of all
bi-invariant metrics on F,,, whose restriction to Ff:’in coincides with p’. Since
M > g/ the family M is non-empty. For any two elements w,v € F,,4, and
an arbitrary ¢ € M, the value ¢(w,v) is bounded from above uniformly in ¢ by

of all words of reduced length

any sum of the form ), p'(ax,br), where w = Y~ ax and v = Y, by are two

representations having the same length and such that ag, b € F®

man- NOW set

d(’U, ’U)) = sup ((’U, w)
SEM
The supremum on the r.h.s. is finite, and has all the required properties.
7. Notice that for w,v € Fy4p

d(w’ ’U) = inf Z pl(aka bk‘);
k

where the infimum is taken over all possible representations of the above sort
w =Y, Gk, V=9, b, having the same length and such that ay,bs € F,(,f’in
[Proof: the infimum on the r.h.s. is a bi-invariant pseudometric, which is greater

than or equal to d, and whose restriction to F,(,f’ lﬂ coincides with the restriction
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of p’. We conclude: this infimum is in fact a metric, and it must coincide with
d.)

8. Denote by § the smallest positive value of the distance p’ (or, equivalently,
d) between any two elements of the finite set F,(nsJ)rn It follows from (7) that
for every word z € Fy, 4., the value of d(w,e) is at least [I(w)/3]d, where I(w)
denotes the reduced length of w.

9. Being free, the group F, 4, is residually finite, that is, admits a separating
family of homomorphisms into finite groups. (Cf. e.g. [21], Ch. 7, exercise 5.)
Therefore, for every natural k£ there exists a normal subgroup Ni such that the
factor-group F,, ,» /Nj is finite and the only word of reduced length < k contained
in Ni is identity. Denote by w: Fp,yp — Fpyn/Ng the factor-homomorphism
and equip Fy,n /Ny with the factor-distance of d by letting

d' (g, h) = inf{d(w,v) | w(w) = g, w(v) = h}.

10. It is immediate that d’ is a bi-invariant pseudometric. Moreover, for k > 3
it is a metric: d'(g,h) > § > €/2 whenever g # h, cf. step 8.

11. Now assume that k > 3[67!] + 4. Let w,v € F,g?in and x,y € N be
arbitrary, ¢ # y. Then d(wz,vy) = d(e, z~'w™lvy) > 1, because w™lv € Ny, and
therefore {(z~'w~'vy) > 3[6'] and (8) applies. Therefore, d'(w(w),w(v)) =
d(w,v) and the restriction of @ to F,(,fin

12. Now set X = Fj,ipn/Ni and &; = w(z;). For every i = 1,...,n, the inner
automorphism of the finite metric group X determined by w(g;) is an isometry,
because the metric is bi-invariant. Denote this isometry by §;. The indexed
metric spaces (gixjgi—l) and (w(g:)Z;w(g:;)" ), i = 1,...,n,j = 1,...,m are
isometric by force of the concluding remark in (11). Taking into account (5), we

is an isometry.

finally conclude that the indexed metric spaces (§;-Z;) and (g;-x;) are e-isometric,
as required. 2

Remark 3.3: A careful analysis of the proof shows the existence of an absolute
constant C = C(m,n,e) > 0 such that the cardinality of the finite metric space
in the statement of Theorem 3.2 does not exceed C.

3.2, Let G be a group. One can introduce a natural topology on the set of
(equivalence classes) of all isometric actions of G on metric spaces (whose size
has to be bounded from above; for instance, it is natural to consider actions
on all metric spaces X of density character not exceeding the cardinality of G).
This topology is similar to the Fell topology on the set of (equivalence classes)
of unitary representations of a group (cf. [9] or [24], p. 12), and is even closer to
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the topology introduced by Exel and Loring on the set of representations of a
C*-algebra (8].

A neighbourhood of an action 7 of G by isometries on a metric space X is
determined by the following set of data: a finite subset F' = {g1,...,9,} C G,
an ¢ > 0, and a finite collection X’ = {x1,...,2,} € X. Say that an action
¢ of G on a metric space Y by isometries is in V[F; X;¢](7), if for some finite
collection Y’ = {y1,...,yn} C Y the metric spaces {g;-2;} and {g;-y:}, naturally
indexed by {1,...,m} x{1,...,n}, are e-isometric. Our Theorem 3.2 can be now
reformulated as follows.

COROLLARY 3.4: Every action of a free group F' on an arbitrary metric space
by isometries is the limit of a net of actions of F' by isometries on finite metric
spaces.

Remark 3.5: It is worth noting that approximation results of the above type
are not unknown. For instance, as a corollary of a criterion by Exel and Loring
[EL] and the known residual finite-dimensionality of the group C*-algebras of
free groups [GM], every representation of such a C*-algebra in a Hilbert space is
approximated in the Exel-Loring topology by finite-dimensional representations.

To cast the above result as one on approximation of topological groups, we need
to remind the concept of the Urysohn universal metric space.

4. Urysohn metric spaces and their groups of isometries

We begin this Section with a summary of some known concepts and results from
theory of Urysohn metric spaces (Subsections 4.1 and 4.2), after which we state a
result on approximation of Polish topological groups by finite groups (Subsection
4.3), establish the fixed point on compacta property of the group of isometries
of the complete separable Urysohn space (Subsection 4.4), and finally give a new
proof of the fixed point on compacta propety for the infinite orthogonal groups
(Subsection 4.5).

4.1. URYSOHN METRIC SPACES. A metric space X is called a (generalized)
Urysohn space if it has the following property: whenever A C X is a finite
metric subspace of X and A’ = AU {a} is an arbitrtary one-point metric space
extension of A, the embedding A < X extends to an isometric embedding A" —
X. (Cf. [43, 44, 27, 50, 47, 10] and [19], 3.11,..)
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There is only one, up to an isometry, complete separable Urysohn metric space,
which we denote by U. This space coutains an isometric copy of every separa-
ble metric space. Moreover, if X is a separable metric space and A C X is a
finite subspace, then every isometric embedding A — U extends to an isometric
embedding X — U.

A metric space X is called n-homogeneous, where n is a natural number, if
every isometry between two subspaces of X containing at most n elements each
extends to an isometry of X onto itself. If X is n-homogeneous for every natural
n, then it is said to be w-homogeneous. The complete separable Urysohn space
U is w-homogeneous and moreover enjoys the stronger property: every isometry
between two compact subspaces of X extends to an isometry of X onto itseif.
Other well-known metric spaces having the same higher homogeneity property
are the unit sphere S of the infinite-dimensional Hilbert space H and the infinite-
dimensional Hilbert space H itself ([3], Ch. IV, §38).

There are some obvious modifications of the concept of Urysohn metric space.
For example, one can consider only metric spaces of diameter not exceeding a
given positive number d. The corresponding complete separable Urysohn space
will be denoted Uy. Another possibility is to consider Urysohn metric spaces in
the class of metric spaces whose metrics only take values in the lattice €Z, € > 0.
The corresponding object will be denoted UsZ (respectively, U).

Certainly, the above are not the only classes of metric spaces for which the
Urysohn-type universal objects exist. For instance, the Urysohn metric spaces for
the class of spherical metric spaces of a fixed diameter in the sense of Blumenthal
(3] are spheres in spaces [3(I'). The infinite-dimensional Hilbert spaces play the
role of Urysohn metric spaces for the class of metric spaces embeddable into
Hilbert spaces.

The following construction of the Urysohn space belongs to Katétov [27]. Let
us say, following [27, 47, 10], that a 1-Lipschitz real-valued function f on a metric
space X is supported on, or else controlled by, a metric subspace Y C X if
for every z € X

f(z) = inf{p(z,y) + f(y):y € Y}.

Put otherwise, f is the largest 1-Lipschitz function on X having the prescribed
restriction to Y. For instance, every distance function z — p(z, zg) from a point
zg is controlled by a singleton, {zo}.

Let X be an arbitrary metric space. Denote by E(X) the collection of all
functions f: X — R controlled by some finite subset of X (depending on the
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function) and having the property

(4.1) |f(z) = f()| < dx(z,y) < flz)+ f(y)

for all z,y € X. If equipped with the supremum metric, E(X) becomes a metric
space of the same density character as X, containing an isometric copy of X
under the Kuratowski embedding:

X >z [dy: X 5y p(z,y) € Rl € E(X).

Besides, the space E(X) contains all one-point metric extensions of every finite
metric subspace of X.
One can form an increasing sequence of iterated extensions of the form

X,E(X),E? = E(E(X)),...,E*(X) = E(E""}(X)),...,

take the union, E*(X), and form the metric completion of it, £ (X). The latter
space is a generalized Urysohn space. If the metric space X is separable, then so
is B*°(X), and thus it is isometric to U. If X is non-separable, then the resulting
metric space E%°(X) need not be w-homogeneous.

If X is a separable metric space with diam(X) < d and throughout the above
construction one replaces E(X) with the metric space E4(X) formed by all func-
tions f satisfying (4.1), bounded by d, and controlled by finite subspaces in a
suitably modified sense, then the resulting metric space E®(X) is isometric to
Ug.

4.2. GROUPS OF ISOMETRIES. A remarkable feature of the above construc-
tion, discovered by Uspenskij, is that it enables one to keep track of groups of
isometries.

Given an arbitrary metric space X, the topology of pointwise convergence
and the compact-open topology on the group Iso(X) of all isometries of X onto
itself coincide and turn Iso(X) into a Hausdorff topological group. The basic
neighbourhoods of identity in this topology are of the form

VI[F;e] = {g € Iso(X): Vz € F, dx(g9(z),z) < e},

where F C X is finite and £ > 0. If X is separable (and thus second-countable),
then so is Iso(X).

Notice that in general the action of Iso(X) on the metric space X is not
bounded (cf. Remark 2.17.2), while the action of Iso(X) by translations on the
space of bounded uniformly continuous (or Lipschitz) functions on X, equipped
with the supremum norm, is not, in general, continuous.
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However, the isometric action of the group Iso(X) on the metric space of all
1-Lipschitz functions on X controlled by finite subsets happens to be continuous.
Indeed, if a function f € E(X) is controlled by a finite Y C X, then the trans-
lation g o f does not differ from f by more than € at any point of X, provided
g € V[Y;e]. Consequently, the canonical representation of Iso(X) in E(X) by
isometries defines a topological group embedding Iso(X) < Iso(E(X)).

Iterating this process countably many times, one obtains a a continuous action
of Iso(X) by isometries on E®(X), which in its turn extends to a continuous
action of Iso(X) on the metric completion E>°(X) = U.

We adopt terminology suggested in [47] and say that a metric subspace Y is
g-embedded into a metric space X if there exists an embedding of topological
groups e: Iso(Y) < Iso(X) with the property that for every h € Iso(Y’) the
isometry e(h): X — X is an extension of A. The above argument establishes the
following result.

PROPOSITION 4.1 (Uspenskij [45]): Every separable metric space X can be g-
embedded into the complete separable Urysohn metric space U.

Since every [second-countable] topological group G embeds into the isometry
group of a suitable [separable] metric space [42], we arrive at the following.

THEOREM 4.2 (Uspenskij [45]): The topoiogical group Iso(U) is the universal
second-countable topological group.

(CE. also [19], 3.11.2_ )
Since every isometry between two compact subspaces of U can be extended to

an isometry of U onto itself, we obtain the following useful corollary of Proposition
4.1.

COROLLARY 4.3: FEach isometric embedding of a compact metric space into U
is a g-embedding.

The question of the existence of universal topological groups of a given un-
countable weight 7 (in fact, of any uncountable weight 7) remains open. However,
recently Uspenskij has established the following result.

THEOREM 4.4 ([47]): Every topological group G embeds, as a topological sub-
group, into the group of isometries Iso(X) of a suitable w-homogeneous Urysohn
metric space X of the same weight as G.

The construction rather resembles the proof of Theorem 4.2, but in order to
achieve w-homogeneity of the union space, one alternates between the Katétov
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metric extension E(-) and the ‘homogenization’ extension, H(-), which forms the
nontrivial technical core of the proof and is described in the following theorem.

THEOREM 4.5 (Uspenskij [47]): Every metric space X g-embeds into an w-
homogeneous metric space H(X) of the same weight as X.

4.3. APPROXIMATION OF TOPOLOGICAL GROUPS. Now we can state yet an-
other reformulation of the approximation Theorem 3.2.

THEOREM 4.6: For every finite collection of isometries g1, . . ., gn of the complete
separable Urysohn metric space U and every neighbourhood V of identity in
Iso(U) there are isometries hy, ..., h, € Iso{U) generating a finite subgroup and
such that higi"l eV,i=1,...,n.

Proof: One can assume that V = V[X;e], where X = {z1,...,2n} C U and
g > 0. Using Theorem 3.2, choose a finite metric space X , elements T1,...,Tm
of X, and isometries §y, .. ., §n of X such that the naturally indexed finite metric
spaces

A={g7'-zj|i=1,2,...,n,5=1,2,...,m}

and
B={g'%]i=1,2,...,n,j=1,2,....,m}

are £/2-isometric.

Using Lemma 3.1, isometrically embed A and X into a finite metric space
Z in such a way that dz(g; *(x:),§; ' (Z;)) < /2 for all i,j. Now extend the
embedding A < U to an isometric embedding Z < U. According to Corollary
4.3, the (finite) group Iso(X) simultaneously extends to a group of isometries of
U. Denote the extension of the isometry §; by h;. One has for all ¢, j:

d(zi, higy (@) = d(G; (:), 97 (2:)) < €/2 <,
and the proof is finished. ]

Let G be a group and let X be a metric space. Every action of G on X
by isometries can be viewed as a homomorphism 7: G — Iso(X). Equip the
set Hom(G,Iso(X)) of all such homomorphisms with the topology of pointwise
convergence on G, that is, the one induced from the Tychonoff product Iso(X)€.
Since, in its turn, the topological space Iso(X) is a subspace of the Tychonoff
product XX, one concludes that Hom(G, Iso(X)) is a topological subspace of the
Tychonoff product X¢*X In this form, the identification of the collection of all
actions 7: G x X — X with a subspace of X¢*X becomes obvious.
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Call an action periodic if it factors through an action of a finite group. One
can reformulate Theorem 4.6 as follows.

COROLLARY 4.7: Let F be a free group. The set of periodic actions of F' on the
Urysohn metric space U is everywhere dense in the set of all actions.

Let F, denote the free group of countably infinite rank. The mapping asso-
ciating to an action 7 of Fy, on U the closure of 7(Fy,) in Iso(U) is a surjection
from Hom(G, Iso( X)) onto the space L(Iso(U)) of all closed subgroups of Iso(U).
Equip the latter space with the corresponding quotient topology. The topology
so defined satisfies the axiom Tj.

COROLLARY 4.8: The set of finite subgroups is everywhere dense in the topo-
logical space L(Iso(U)).

This leads to an approximation result for Polish topological groups.

COROLLARY 4.9: Let G be a Polish topological group. Then under every isomor-
phic embedding into Iso(U) the group G is the limit of a net of finite subgroups.

Remark 4.10: At the first sight, the above may seem to contradict the general
principle (in particular espoused and explained by Vershik in [49]) according to
which approximability of an (infinite) group G by finite groups is essentially
equivalent to amenability of G. In fact, our results are in perfect agreement with
this principle in that the approximating groups come from ‘without’ the group
G and thus form an approximation not to G itself, but to a suitable topological
group extension of G, which indeed turns out to be amenable (and even extremely
amenable).

4.4. THE FIXED POINT PROPERTY OF THE GROUP Iso(U). Theorems 4.6 and
2.2 enable us to deduce the fixed point on compacta property for the group of
isometries of the complete separable Urysohn space U.

THEOREM 4.11: The group Iso(U) of all isometries of the complete separable
Urysohn space U, equipped with the standard (pointwise = compact-open) topol-
ogy, is extremely amenable (has the fixed point on compacta property).

Proof: Let the group Iso(U) act continuously on a compact space K. We will
show that every finite collection of elements of Iso(U) has a common fixed point
in K. from which the result follows by an obvious compactness argument. Fix
an arbitrary such collection, g1,...,gn € Iso{U).

Let U € Uk be an arbitrary element of the unique compatible uniform structure
on K. Without loss in generality, assume that U is closed as a subset of K x K
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(and consequently compact). Using the boundedness of the action of Iso(X) on
K, choose a finite X C U and an € > 0 such that, whenever g € V = V[X;¢],
one has (g-k,k) € V forall k € K.

By Theorem 4.6, there are isometries hq,..., h, € Iso(U) generating a finite
subgroup H and such that h,-gi_1 eV,i=1,...,n.

Let X be a finite H-invariant subset of U containing X. The iterated Katétov
extension B> (Lo(I, X )) contains X as a subspace made up of all constant func-
tions and is isometric to U, and since X is finite, an isometry between the two
spaces can be chosen so as to extend the canonical embedding of X into U. Thus
we obtain a chain of g-embeddings

X C Lo(I,X) CU.

The group Lo(I, H) acts on Lo(I, X) continuously and isometrically (Lemma
2.18), and this action canonically extends to a continuous isometric action of the
same group on the space E®(Lo(I, X)) 2 U. Thus we obtain a continuous group
monomorphism j: Lo(I, H) — Iso(U) with the property that for every h € H one
has j(h) 5 = hly.

Composing j with the action Iso(U) — Homeo(K), we obtain a continuous
action of Lo(I, H) on K. By force of Theorem 2.2, Lo(I, H) has a common fixed
point in K, say x. In particular, « is fixed under the elements j(hy),...,5(h,) €
Iso(U), where we identify elements of H with constants in Lo(I, H).

Forallz € X and i = 1,2,...,n, one has

d(i(hi) M (2), 9; (2)) = d(hi N (2), 97 (2)) <€

for all 7 and z € X, implying that j(h,')gi_1 eViori=1,2,...,n. Consequently
and by the choice of V = V[X;¢],

(9ik, K) = (girs, j(hi)) = (gins, ((Ra)g7 ") - (9ik)) € U

for all i. Denote by Fy the (non-empty) set of all points z € K with the property
(giz,z) € U for alli. Since U is closed, sois Fy C K. If Uy C Uy, then Fy, C Fy,.
It means that {Fy} is a centred system of closed subsets of the compact space
K and therefore has a common point, which is clearly fixed under gq,...,gn, as
required. |

Remark 4.12: The same argument verbatim also establishes the fixed point on
compacta property of the topological group Iso(Uy) of isometries of the complete
separable universal Urysohn space of finite diameter d.
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4.5. A NEW PROOF OF THE FIXED POINT ON COMPACTA PROPERTY OF THE
INFINITE ORTHOGONAL GROUP. The above proof can be easily modified so as to
result in a new proof of extreme amenability of the orthogonal group O(H) of an
infinite-dimensional Hilbert space with the strong operator topology. This proof
does not rely on such advanced tools from geometry as Gromov’s isoperimetric
inequality for groups SO(n).

The following belongs to folklore.

LEMMA 4.13: Let X be a metric subspace of the unit sphere S of a real Hilbert
space H. Suppose a topological group G acts on X continuously by isometries.
Then the action of G extends to a strongly continuous action of G by isometries
on the sphere S (that is, to a strongly continuous orthogonal representation of G
inH). Put otherwise, every metric subspace of the unit sphere S of a real Hilbert
space is g-embedded into S. If the linear span of X is dense in ‘H, the extension
is unique.

Proof: Since for every z,y € X the value of the inner product is uniquely
determined by the Euclidean distance between the elements,

1
(.'L‘, y) =1- EPX($7y)27

there is only one way to turn the linear span lin(X) into a pre-Hilbert space so
as to induce the given metric on X. The corresponding completion K = 1/11\1(X )
is isometrically isomorphic to the closed linear span of X in H, that is, # =
K @ K+. As another consequence of the same observation, every isometry of X
lifts to a unique orthogonal transformation of X. The resulting homomorphism
m: G — O(K) is continuous if the latter group is equipped with the topology of
simple convergence on X or, which is the same, on lin{(X). On the groups of
isometries of metric spaces the topology of simple convergence on an everywhere
dense subset coincides with the topology of simple convergence on the entire
space. Consequently, the extended orthogonal representation 7 of G in K is

strongly continuous. It remains to extend 7 to a representation (g I dO ) of
XL

G in ‘H. The uniqueness statement is obvious. 1

Here is an outline of the alternative proof of extreme amenability of O(H),. We
will be only considering the separable case H = ly; the extension to non-separable
case is straightforward.

Every finite collection g1, gs, .. ., gn of elements of O(l5), viewed as isometries
of the unit sphere S, can be approximated (in the strong operator topology)
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by a collection of elements g1, g3, ..., g}, of a finite-dimensional orthogonal sub-
group in the following sense: for a given natural m and an ¢ > 0, one has
llgi(es) — gi(ej)ll < e foralli=1,2,...,n, j=1,2,...,m, where g; € O(N), e,
denote the standard basic vectors, and the rank N is sufficiently large.
According to Lemma 2.18, the topological group Lg(I, O(NN)) acts continuously
by isometries on the metric space Lo(I,S%), equipped with the lo-metric. (The
topology induced on L(I,S) by l;-metric is still that of convergence in measure,
because SV is compact.) The metric space Ly(I,SV) is spherical of diameter one
and thus can be embedded into S as a metric superspace of S¥. Using Lemma
4.13, we obtain a chain of continuous monomorphisms of topological groups

O(N) < Lo(I,0(N)) < Iso( Lo (I, SV)) < O(l2).

According to Theorem 2.2, the second topological group on the left is extremely
amenable. It follows that the orthogonal operators gi, g, . .., g, have a common
fixed point in every compact space upon which O(l3) acts continuously. Now the
proof is accomplished in the same way as in Theorem 4.11.

5. Ramsey-type theorems for metric spaces vs f.p.c. property

5.1. RAMSEY-DVORETZKY—MILMAN PROPERTY. In order to extend the result

about fixed point on compacta property of the isometry group Iso(U) beyond the

separable case, we will obtain a new characterization of extremely amenable

groups of isometries in terms of a Ramsey-type property of the metric spaces X.
The following is an adaptation from [18], Sect. 9.3.

Definition 5.1: Let G be a group of uniform isomorphisms of a uniform space
X. We will say that the pair (G, X) has the Ramsey—Dvoretzky—Milman
property if for every bounded uniformly continuous function f from X to a
finite-dimensional Euclidean space, every € > 0, and every compact K C X, the
function f is e-constant on a suitable translate of K, that is, there isa g € G
such that

Osc(f | gK) < e.
Equivalently, ‘compact’ can be replaced with ‘finite.’

We defer two master examples (Ex. 5.6 and 5.8) in order to precede them by a
few simple preliminary results. The following is established by pulling back the
function f from Y to X.
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LEMMA 5.2: Let G be a group, acting by uniform isomorphisms on the uniform
spaces X and Y, and let f: X — Y be an equivariant uniformly continuous map
with everywhere dense range. If the pair (G,X) has the Ramsey—Dvoretzky—
Milman property, then so does (G,Y).

Denote by Ux the totally bounded replica of the uniform structure Ux on X,
that is, the coarsest uniform structure preserving the uniform continuity of every
bounded uniformly continuous function on X. Basic entourages of the diagonal
for Uy are of the form

{(9,h) € X x X:|f(z) - f(y)| <e},

where f: X — RY is bounded uniformly continuous, N € N.
The following reformulation of the R-D-M property is immediate.

PROPOSITION 5.3: A pair (G, X) has the Ramsey—Dvoretzky—-Milman property
if and only if for every compact (equivalently: finite) K C X and every entourage
V € Ux there is a g € G with gK being V-small: gK x gK C V.

ProprosITION 5.4: Let X = (X,Ux) be a uniform space. A basis of entourages
for the totally bounded replica Uy of Ux is given by all finite covers of the form
{V[A]: A € v}, where vy is an arbitrary finite cover of X and V € Ux.

Proof: The claim consists of two parts: first, that all sets of the form

U VIA4] x V[4], v finite, V € Ux
A€y

are elements of Uy, and second, that each enourage from /% contains a set of
the above type.

(1) Given v, V, and A as above, choose a bounded uniformly continuous pseu-
dometric d on X such that (d(z,y) < 1) = ((z,y) € V), and introduce a bounded
uniformly continuous function f from X to the Euclidean space RI"! with each
component f4, A € v, defined by

X3z fa(z):=d(z,A) e R

The set {(z,y) € X2 |f(z) — f(y)| < 1} is an element of U} and a subset of
Uae, VIA] x V[A]

(2) Let W € Ux be arbitrary. Choose a bounded uniformly continuous function
f: X = RN and an ¢ > 0 such that {(z,y) € X2 |f(z) — f(y)| < e} C W.
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Partition the image f(X) into finitely many pieces of diameter < £/2 each and
let v be the family of preimages of those pieces under f. Define

V ={(z,y) € X |f(z) ~ f(y)] <e/2} € Ux CUx.
Clearly, U, VIAl x V[A] C W. |
As an immediate corollary, one obtains the following.

PROPOSITION 5.5: A pair (G, X) has the Ramsey-Dvoretzky-Milman property
if and only if for every compact (equivalently: finite) K C X, every finite cover
v of X, and every entourage V € Ux, there is a g € G such that gK is contained
in the V-neighbourhood of some A € .

Here is the first major example.

Example 5.6: Let T" be an infinite set, and let n be a natural number. Choose
as G the group Sl'f of all finite permutations of T, and as X the set I'™) of all
n-subsets of I, equipped with the finest (discrete) uniformity. Using Proposi-
tion 5.5, one can easily see that the pair (I'™), Sif) has the Ramsey-Dvoretzky-
Milman property, which statement is indeed equivalent to the finite Ramsey
theorem.

Recall that the basic entourages for the left uniform structure U+(G) on a
topological group G are of the form

Vo= {(g,h) € G xG: g th eV},

where V' is a neighbourhood of identity in G. If d is a left invariant continuous
pseudometric on G and € > 0, then the set V[d;¢] = {(z,y) € X% d(z,y) < ¢}
is an element of U+(G). Since for every neighbourhood of identity V there is a
bounded left invariant continuous pseudometric d on G with (d(z,eq) < 1) =
(z € V) and consequently V4 D V[d;1], it follows that the left uniform struc-
ture on a topological group is determined by left invariant bounded continuous
pseudometrics.
If d is a left invariant continuous pseudometric on G, then

Hy={z € G:d(z,ec) =0}

forms a closed subgroup of G, and the pseudometric d induces a continuous left-
invariant metric d on the factor-space G/Hy by the formula d(zH, yH) := d(z, y).
The canonical factor-map 7: G — (G/Hy, ri) is uniformly continuous. Notice that
in general both the topology and the uniform structure induced by d are coarser
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than the factor-topology and the left uniform structure on G/Hy. We will denote
the G-space G/Hy4 equipped with the left invariant metric d by G/d, which is
consistent with the notation sometimes used in set-theoretic topology: in our
situation, G/d is the metric space canonically associated to the pseudometric
space (G, d).

The following result (which grew out of V.V. Uspenskij’s conjecture) reveals
the link between the Ramsey-Dvoretzky—Milman property and the existence of
fixed points.

THEOREM 5.7: For a topological group G, the following are equivalent.

(i) G has the fixed point on compacta property.

(ii) The pair (G,G4) has the Ramsey-Dvoretzky—Milman property.

(ili) For every left-invariant continuous pseudometric d on G, the pair (G, G/d)
has the Ramsey—Dvoretzky—-Milman property.

(iv) Whenever G acts continuously and transitively by isometries on a metric
space X, the pair (G, X) has the Ramsey-Dvoretzky—Milman property.

(v) For some family D of bounded continuous left invariant pseudometrics
d, generating the topology of G, each pair (G,G/d) has the Ramsey—
Dvoretzky—-Milman property.

Proof: (1) & (ii): according to Theorem 2.8, the fixed point on compacta prop-
erty of a topological group G is equivalent to the following: for every bounded
right uniformly continuous function f on G taking values in a finite-dimensional
Euclidean space, every finite collection of elements g1, g2,...,9n € G, and every
€ > 0, there is an = € G such that

|f(z) = flgix)| <e foralli=1,2,...,n.

The mirror image of the above statement applies to left uniformly continuous
functions and calls for the existence of an x € G with the property

|f(z) — f(zg:)| < e for all i.

This amounts to the Ramsey-Dvoretzky—Milman property for the pair (G, G+)
relative to the left action (with K = {eg,91,92,-.-,9n))-

(if) = (iii): as the canonical map G — G/d is uniformly continuous and
G-equivariant, Lemma, 5.2 applies.

(iii) = (iv): Let dx denote the invariant metric on X. Fix an arbitrary point
zg € X. The formula d(g, h) := dx(gzo, hzo) defines a left invariant continuous
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pseudometric on &, and the map G > g — gzg € X factors through to a
G-equivariant isometric isomorphism between G/d and X.

(iv) = (v): Trivial, as G acts on each space G/d continuously and transitively
by isometries.

(v) = (ii): Suppose we are given a finite subset F' C G, a finite cover v of G,
and a basic element V4 of the left uniformity G4, where V' is a neighbourhood of
identity in G. Choose a bounded left invariant continuous pseudometric d € D
with the property (d(z,eg) < 1) = (z € V). The sets m(A), A € v, where
n: G — G/d is the factor-map, form a finite cover of G/d, and by assumption
there is a g € G such that gn(F) is entirely contained in the 1-neighbourhood of
some w(A), A € v. Denote, as before, Hy = {g € G: d(g,eg) = 0}. The value of d
is independent on the choice of representatives in left cosets: d(zhy, yhe) = d(z,y)
for all z,y € G, hy,hs € Hy. Let f € F be any. Since d(gn(f),n(a)) < 1 for
some a € A, one has d(gf,a) < 1, that is, gF is contained in V4[A] = AV, and
the Ramsey—Dvoretzky-Milman property of (G, G4) is thus verified. |

Example 5.8: The second major example is given by the pair consisting of
the full unitary group U(H) of an infinite-dimensional Hilbert space # and the
unit sphere Sy equipped with the Euclidean distance. The Ramsey-Dvoretzky—
Milman property of this pair follows from Theorem 5.7 and the extreme amenabil-
ity of U(H)s (cf. Subsection 4.5). In fact, a direct proof of this property does not
require the extreme amenability of the unitary group, and such was the original
proof by Milman [31] (who then used the R-D-M property to give a new proof of
Dvoretzky theorem on almost spherical sections of convex bodies), cf. also (18],
Sect. 9.3.

For sufficiently homogeneous spaces and their full groups of isometries
Theorem 5.7 assumes a combinatorial form of a Ramsey-type result for metric
spaces somewhat in the spirit of [30] or [29], but in an ‘approximate’ implemen-
tation. We proceed to examine this connection now.

5.2. RAMSEY-TYPE PROPERTIES OF METRIC SPACES. Let X be a metric space,
and let F be a finite metric subspace of X. The stabilizer of F,

Str = {g € Iso(X): gz = z for each z € F},

is a closed subgroup of Iso(X). Denote by X*“F the family of all isometric
embeddings of F into X, equipped with the natural action of Iso(X) on the left:

X“Fs5jmg0je X°F
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The supremum metric on X <F given by
dsup(i, §) = max{d(i(z), j(z)): x € F},
is Iso( X )-invariant. Denote by dg the pull-back of the metric dgyp to Iso(X):

dr(g, h) = dsup(giFa hir),

where ip: F < X is the canonical embedding. Left-invariant pseudometrics of
the form dp, where F' runs over all finite subspaces of X, generate the usual
topology of pointwise convergence on Iso(X).

If X is |F|-homogeneous, the following establishes an isomorphism of Iso(X)-
sets:

(5.1) G/Stp 3 gStp — [g|lp: F = gF) e X°F.

In the combinatorial spirit, we will refer to [finite] partitions of a metric space X
as colourings of X [using finitely many colours]. A subset ¥ C X is monochro-
matic if Y C X for some A € v, and monochromatic up to an ¢ > 0if Y is
contained in the e-neighbourhood of some A € 7.

A direct application of Theorem 5.7 now results in the following.

THEOREM 5.9: Let X be an w-homogeneous metric space. The following condi-
tions are equivalent.

(i) The full group of isometries Iso(X) with the pointwise topology is extremely
amenable.

(ii) Let F C X be a finite metric space, and let X “F be coloured using finitely
many colours. Then for every finite metric subspace G C X and every
¢ > 0 there is an isometric copy of G, G' C X, such that all isometric
embeddings F — X that factor through G’ are monochromatic up to €.

Remark 5.10: There is a natural surjection from X ¥ onto the collection X (F)
of all subspaces of X isometric to F', as the latter space is obtained from the
former one by factoring out the group of distance-preserving permutations of F:

XF) = X<F [ Tso(F).

In particular, if the metric space F is rigid (for example, if no two distances
between different pairs of points are the same), then the spaces X (F) and X©F
can be identified. In general, however, the distinction between the two spaces has
to be maintained, and as we shall see (Theorem 6.9), some groups of isometries of
w-homogeneous metric spaces fail to have the fixed point on compacta property
namely due to the fact that the two spaces X (F) and X<F are different.
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Remark 5.11: Theorem 5.9 provides at one’s disposal a rather versatile tool.
The main application in this article will be to establish the extreme amenabil-
ity of groups of isometries of w-homogeneous generalized Urysohn spaces. The
result shall also be used to demonstrate that some groups of isometries are not
extremely amenable. And finally, one can turn Theorem 5.9 around in order to
deduce Ramsey-type results for metric spaces from the known results on extreme
amenability of various topological groups established by other means. The next
Section contains examples of applications of each sort.

6. Applications

6.1. EXTREME AMENABILITY OF THE GROUPS Iso(U). We want to formalize
the content of the condition (ii) of Theorem 5.9, as follows.

Definition 6.1: Let F and G be finite metric spaces, let m € N, and let ¢ > 0.
Denote by R(F, G, m,¢) the following property of a metric space X:

X € R(F,G,m,¢) < for every colouring of the set X*=F of all isometric embed-
dings of F into X with < m colours, there is an isometric embedding j: G — X
such that all embeddings of F into X that factor through j are monochromatic
up to €.

Say that a metric space X has property R if X € R(F,G,m,¢) for all finite
metric spaces F,G embeddable into X, for all m € N, and all € > 0.

Remark 6.2: Now Theorem 5.9 can be reformulated as follows: an w-transitive
metric space X has property R if and only if the topological group Iso(X) is
extremely amenable.

ProPOSITION 6.3: Let F and G be finite metric spaces, let X be a metric space
containing a copy of F, let m be a natural number, and let ¢ > 0. The following
are equivalent.
(1) X € R(F,G,m,¢).
(i) There is a finite subspace Z C X containing a copy of F' such that Z €
R(F,G,m,¢).

Proof: (i) = (ii): assume —(ii), that is, no finite subspace Z of X containing
a copy of F is in R(F,G,m,e). Denote by Z the collection of all finite metric
subspaces Z C X with Z<°F # (. By assumption, Z # 0.

Then for every Z € Z the set Z—F admits a colouring with m colours, which
we will view as a function fz: Z<F — {1,2,...,m}, in such a way that the
following holds:
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(x) for every isometric embedding i: G — Z and every colour k = 1,2,...,m
there is an isometric embedding ji: F' < G such that the e-neighbourhood of

ZF contains no elements of colour %.

10 j in

The system Z is directed by inclusion, and the collection of intervals [K, co) =
{Z € Z: K C Z}, where K C X is finite, is a filter on Z, which we will
denote by F. Since X can be assumed infinite (otherwise there is nothing to
prove), F extends to a free ultrafilter A on Z. For every j € X*F, one has
[{§(F)},o0) € F C A, and therefore exactly one of the sets {Z € Z: fz(j) = i},

1 <¢<misin A. Consequently, the function
£) = tim f2(5)

determines a colouring of X “°F with m colours.

Now let ¢: G < X be an arbitrary isometric embedding, and let k& €
{1,2,...,m} be a colour. For every Z € [+((), o0) choose, using (*), an isometric
embedding jz x: F' < G with no element in the e-neighbourhood of tojz x, formed
in Z<F being of fz-colour k. For every z € F define jx(z) = lima jzx(z) € G.
(The metric space G is finite.) This j is an isometric embedding of F into G with
the property that the e-neighbourhood of ¢ o ji formed in all of X ¥ contains
no elements of colour k. Thus, (i) is established.

(i) = (i): evident. |

COROLLARY 6.4: Let X and Y be two metric spaces having, up to isometry, the
same finite metric subspaces. If X has property R, then so doesY .

THEOREM 6.5: Let X and Y be two w-homogeneous metric spaces, having, up
to isometry, the same finite metric subspaces. Then the topological group Iso(X)
has the fixed point on compacta property if and only if the topological group
Iso(Y) does.

Proof: Combine Theorem 5.9 and Corollary 6.4. |

We can finally deduce from Theorem 6.5 and Theorem 4.11 the following result,
which is the raison d’étre of the article.

THEOREM 6.6: Let U be a generalized Urysohn metric space. If U is w-
homogeneous, then the group Iso(U) has the fixed point on compacta property.

Modulo Uspenskij’s Theorem 4.4, the above Theorem implies the following.
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COROLLARY 6.7: Every topological group embeds, as a topological subgroup,
into an extremely amenable topological group, that is, a topological group with
the fixed point on compacta property.

Even the following appears to be a new result.

COROLLARY 6.8: Every topological group embeds, as a topological subgroup,
into an amenable topological group.

6.2. GROUPS OF ISOMETRIES OF DISCRETE URYSOHN SPACES. Here we will
demonstrate how Theorem 5.9 can be used to show the absence of the fixed
point on compacta property in the case where the w-homogeneous metric space
in question fails the ‘strong’ version of Ramsey-type property.

THEOREM 6.9: The group of isometries of the discrete Urysohn metric space
U does not have the fixed point on compacta property.

Proof: Denote by {a, b} the two-element metric space with d(a, b) = . Partition
the set (Us%)<{2:b} of all isometric embeddings of {a, b} into UZ into two disjoint
subsets A, B in such a way that whenever an injection i: {a,b} — (UZ) is in
A, the ‘flip’ injection i o o9 is in B, and vice versa. Since the space UZ is e-
discrete, the e-neighbourhood of a subset X is X itself, and ‘monochromatic up
to &’ means in this context simply ‘monochromatic.” One concludes that, with
respect to the colouring {A, B}, no pair of injections of the form ¥ = {i,i o 03}
is monochromatic up to &, and thus the metric space (U¢%)<1%%} upon which
the group Iso(U?) acts transitively and continuously by isometries, fails the
Ramsey—Dviretzky—Milman property. |

Remark 6.10: The same result holds for discrete Urysohn spaces of bounded
diameter, Uaz. In particular, letting € = 1 = d, we obtain a result proved by the
present author in [37], Th. 6.5: the group of permutations S, of an infinite set,
equipped with the pointwise topology, is not extremely amenable. (This result
seems to answer in the negative an old question by Furstenberg discussed in [20].)

Notice also that the groups of isometries of infinite, w-homogeneous metric
spaces need not be extremely amenable.

The countable metric space U%, equipped with the {0,1}-valued metric,
actually satisfies a ‘weaker’ version of the Ramsey result, namely the one for
finite subspaces, rather than for their injections, and this result is the well-known
Finite Ramsey Theorem. (Cf. Ex. 5.6.) However, as we have just seen, the group
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fails the ‘stronger’ version for embeddings of finite spaces! The latter circum-
stance destroys the extreme amenability of S.

Finally notice that the topological group S, is amenable, because it is ap-
proximated from within by an increasing chain of finite groups of permutations
whose union is everywhere dense.

6.3. DEDUCING RAMSEY-TYPE THEOREMS FOR METRIC SPACES. By force of
Theorem 5.9, the immediate corollary — and in fact an equivalent form — of
the fixed point on compacta property of the group Iso(U) (Theorem 4.11) is the
following Ramsey-type result.

COROLLARY 6.11: Let F' be a finite metric space, and let all isometric embed-
dings of F' into U be coloured using finitely many colours. Then for every finite
metric space G and every € > 0 there is an isometric copy G' C U of G such that
all isometric embeddings of F' into U that factor through G are monochromatic
up toe.

By restricting ourselves to considering only Iso(F')-invariant collections of
embeddings of F' into U, we arrive at the following.

COROLLARY 6.12: Let F be a finite metric space. Let all subspaces of the
Urysohn space U isometric to F' be coloured using finitely many colours. Then
for every finite metric space G and every € > 0 there is a subspace G' C U
isometric to G whose subspaces isometric to F' are monochromatic up to €.

Applications to spherical spaces are probably more interesting. (Cf. comments
in [30] at the bottom of p. 460). The unit sphere of the infinite-dimensional
Hilbert space H is an w-homogeneous metric space, and the orthogonal group of
‘H with the strong operator topology (that is, the topology of simple convergence
on the sphere) is extremely amenable [20]. As a corollary, we obtain Ramsey-type
results for the Hilbert sphere.

COROLLARY 6.13: Let F' be a finite metric subspace of the unit sphere S in
an infinite-dimensional Hilbert space. Let all isometric embeddings of F' into S
be coloured using finitely many colours. Then for every finite metric subspace G
of the sphere and every ¢ > 0 there is an isometric copy G' C S of G such that
all isometric embeddings of F into G’ are monochromatic up to .

COROLLARY 6.14: Let F' be a finite metric subspace of the unit sphere S* in
an infinite-dimensional Hilbert space. Let all subspaces of S* isometric to F
be coloured using finitely many colours. Then for every finite subspace Y of
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the sphere and every € > 0 there is a subspace Y’ C §° isometric to Y whose
subspaces isometric to F' are monochromatic up to €.

To establish similar corollaries for metric subspaces of the infinite-dimensional
Hilbert space, we need the following result. Notice that amenability of the group
Iso(H) of affine isometries of a Hilbert space [24], p. 47.

THEOREM 6.15: The group Iso(#) of affine isometries of a Hilbert space H of
infinite dimension is extremely amenable.

Proof: The topological group Iso(#) is isomorphic to the semidirect product
O(H) x H of the full orthogonal group O(#) equipped with the strong operator
topology and the additive group of the Hilbert space H with the usual norm
topology, formed with respect to the natural action of O(H) on H by rotations.
(Cf. [24].) Suppose Iso(#) acts continuously on a compact space K. Since the
group O(H) (identified with a subgroup of Iso(#)) is extremely amenable ([20]; cf.
also Subsection 4.5), it has a fixed point k € K. The mapping H 3z z-xk € K,
where H is viewed as a closed normal subgroup of Iso(H), is Iso(#)-equivariant,
continuous, and has everywhere dense image in K, and thus K is an equivariant
Iso(H)-compactification of the homogeneous factor-space H = Iso(H)/O(H).

Let ¢: K — RY be an arbitrary continuous function, N € N. Its pull-back,
f(z) =: p(z-K), to M is right uniformly continuous. (A standard result in abstract
topological dynamics.) If € > 0 is arbitrary, then for some neighbourhood V =
V[F; 8] of identity in Iso(#) one has |f(g(0)) — f(h(0))| < € whenever gh~ € V.
Without loss in generality and slightly perturbing the points of F if necessary,
one can assume that elements of F' are affinely independent. Let x,y € H be two
arbitrary elements with the property ||z — z]| = ||y — 2]| for each z € F. Find
an isometric copy of F, say F’, such that F' U {0} is isometric to F U {z} (or,
equivalently, to FU{y}). There is an isometry g of H taking F'U{0} to Fu{z},
and an isometry h taking F' U {0} to F U {y}. In particular, gh=}|r =Idr € V,
and consequently |f(z) — f(y)| < e. Thus, the function f is e-constant on every
affine sphere of codimension |F| having the form

{zeMH:|lz—z|=rs,z€ F} = [ Sr.(2).

zZEF

Another way to say it is that, up to ¢, the function f(z) only depends on the
collection of distances {||z — z||: z € F}.

Now let g1, ..., gn € Iso(H) be an arbitrary collection of isometries. By slightly
perturbing them if necessary, one can assume without loss in generality that all
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the vectors z and g;” Y2),z€ F,i=1,2,...,n, are affinely independent. Because
of infinite-dimensionality of #, every element z of some affine subspace of H of
finite codimension has the property that for every i =1,2,...,n and each 2z € F,
one has ||z — g{l(z)” = |lz — z||. Fix any such z. Then the values of f at the
points z, g1(z), g2(x), . . ., gn(z) differ by less than e. Now we can apply Theorem
2.8 to conclude that K has a fixed point for Iso(H). |

COROLLARY 6.16: Let F be a finite metric subspace of the infinite-dimensional
Hilbert space H. Let all isometric embeddings of F' into ‘H be coloured using
finitely many colours. Then for every finite collection Y of such embeddings
and every € > O there is a collection of embeddings Y' congruent to Y and
monochromatic up to ¢.

COROLLARY 6.17: Let F' be a finite metric subspace of an infinite-dimensional
Hilbert space H. If all subspaces of H isometric to F are coloured using finitely
many colours, then for every finite subspace G of H and every ¢ > 0 there is
an isometric copy G' of G in H such that all subspaces of G’ isometric to F are
monochromatic up to €.

7. Concluding remarks

In this article we have investigated some relationships inside the following
triangle:

‘ extreme amenability ‘

e NN
concentration Ramsey

Deeper explorations of the Ramsey—Milman phenomenon in topological
transformation groups require discovering situations in which a ‘phase

transition’ between concentration and dissipation occurs in families of topological
groups,/dynamical systems. (Cf. [4].) It could be, for example, that a solution to
Glasner’s problem on the existence of a minimally almost periodic group topology
on the integers without the fixed point on compacta property [12] lies namely in
this direction.

In connection with the Banach-Mazur problem (cf. [6]), it could be worth
investigating the fixed point on compacta property for the groups of isometries
of separable Banach spaces admitting a transitive norm.

Finally, we do not know if the results of Section 6 can be put in direct connec-
tion with the Euclidean Ramsey theory [16].
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