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ABSTRACT 

In this paper  we further  s tudy links between concentrat ion of measure in 

topological t ransformat ion groups, existence of  fixed points, and Ramsey- 

type theorems for metric spaces. We prove tha t  whenever the  group 

Iso(U) of isometries of Urysohn 's  universal complete separable metric 

space U, equipped with the  compact -open topology, acts upon an ar- 

bi trary compact  space, it has a fixed point. The  same is t rue if U is 

replaced with any generalized Urysohn metric space U that  is sufficiently 

homogeneous. Modulo a recent theorem by Uspenskij tha t  every topolog- 

ical group embeds into a topological group of the  form Iso(U), our result 
implies that  every topological group embeds into an extremely amenable 
group (one admit t ing  an invariant multiplicative mean on bounded right 
uniformly continuous functions). By way of the  proof, we show tha t  
every topological group is approximated by finite groups in a certain 

weak sense. Our technique also results in a new proof of the  ext reme 

amenabil i ty (fixed point on compacta  property)  for infinite orthogonal  

groups. Going in the  opposi te  direction, we deduce some Ramsey- type  
theorems for metric subspaces of Hilbert  spaces and for spherical metric  

spaces from existing results on ext reme amenabil i ty of  infinite uni tary 

groups and groups of isometries of Hilbert  spaces. 
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1. I n t r o d u c t i o n  

The concept of amenability extends from locally compact groups to arbitrary 

topological groups, and an interesting observation of recent times is that un- 

der such a transition the concept 'gains in strength' in that a number of concrete 

infinite-dimensional groups of importance satisfy a reinforced version of amenabil- 

ity such as locally compact groups cannot possibly have. 

Definitions of amenability equivalent in the locally compact case diverge 

already for some of the most common infinite-dimensional topological groups 

[22]. Nevertheless, the following choice has become standard [35, 1]: call a topo- 

logical group G a m e n a b l e  if every continuous affine action of G on a convex 

compact set has a fixed point. Equivalently, there is a left invariant mean on 

the space Cb(G) of all bounded right uniformly continuous functions on G. This 

concept is in particular given substance by the following result due to de la Harpe 

[23]: a v o n  Neumann algebra A is injective if and only if the unitary group U(A) 
equipped with the ultraweak topology is amenable. (Cf. also [36].) Such results 

suggest that namely the above definition and not, for example, the one calling 

for an invariant mean on all bounded continuous functions on G, is the 'proper' 

choice. 

In particular, a topological group G is amenable if it has a fixed point in 

every compact space it acts upon. Such topological groups are said to have the 

f ixed po in t  on  c o m p a c t a  p r o p e r t y  (Lp.c.)  [12], or else called e x t r e m e l y  

a m e n a b l e ,  in the spirit of [17] where the concept was applied to discrete semi- 

groups. The condition is equivalent to the existence of a left invariant mul t i -  

p l i ca t ive  mean on C~(G). 

At the first sight, the latter property seems to be far too restrictive to be 

observed en masse. In particular, according to a well-known theorem of Veech 

[48], no locally compact group has the fixed point on compacta property. (For 

discrete groups, this was previously noted in [7].) Historically the first examples 

of extremely amenable groups [26, 2], difficult to construct, looked like genuine 

pathologies. 

Nevertheless, in recent times it was shown that a number of well-known 'mas- 

sive' topological groups possess the fixed point on compacta property, among 

them 

• the unitary group U(7/) (and the orthogonal group 0(7/))  of an infinite- 

dimensional Hilbert space with the strong operator topology (Gromov and 

Milman [20]), 

• the group LI(X, U(1)) of measurable maps from a non-atomic Lebesgue 
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space to the circle group, equipped with the Ll-metric (Glasner [12] and 

independently, unpublished, Furstenberg and B. Weiss), 

• groups Homeo+(][) and Homeo+(R) of orientation-preserving homeo- 
morphisms with the compact-open topology (the present author [37]), 

• groups of measure-preserving automorphisms of standard sigma-finite 

measure spaces with the strong topology (Giordano and the present 

author [11]). 

The technique used to establish the fixed point on compacta property in 

the above examples has been either that of concentration of measure on high- 

dimensional structures (pioneered in this context by Gromov and Mihnan [20]), 

or else infinite Ramsey theory, as in [37]. 

In this article we isolate a new and vast class of topological groups with the 

fixed point on compacta property: they are groups of isometries of very regular 

and highly homogeneous objects, the (generalized) Urysohn metric spaces. 

Universal metric spaces were introduced by Urysohn in the 20's [43, 44] and 

investigated mostly in the separable case. In particular, there is, up to an iso- 

metry, only one complete separable Urysohn metric space, which we will denote 

by U. For a long time Urysohn spaces remained little known outside of general 

topology, and the most important advances at that  period were due to Kat~tov 

[27], who had made the structure of the space U more transparent, and Uspenskij 

[45], who had proved that  the group of isometries Iso(U) with the compact- 

open topology forms a universal second-countable topological group. Uspenskij's 

construction was later used by Gao and Kechris [10] to deduce, among others, 
the following result: every Polish topological group is the group of all isometries 

of a suitable separable complete metric space. Recently the Urysohn spaces were 
linked to wider issues in geometry and analysis, particularly by Vershik who has 

for example shown [50] that the completion of the set of integers equipped with a 

'sufficiently random' metric is almost surely isometric to U. A further discussion 

of the space U and its links with geometry is to be found in Gromov's book [19]. 

We shall prove that the group Iso(U) has the fixed point on compacta property 

(Theorem 4.11), and moreover the same is true of isometry groups Iso(U) of all 

sufficiently homogeneous generalized (non-separable) Urysohn spaces U (Theo- 

rem 6.6). According to a recent result by Uspenskij [47], every topological group is 

contained, as a subgroup, in the group of isometries of such a generalized Urysohn 

space. The two results combined imply that extreme amenability is, in a sense, 

ubiquitous: every topological group embeds, as a topological subgroup, into a 

topological group with the fixed point on compacta property (Corollary 6.7). 
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It is known since the work of de la Harpe [22] that a closed subgroup of an 

amenable topological group need not be amenable, unlike in the locally compact 

case. The reported results take this observation to its extreme. The possibility 

of such a development was conjectured in our paper [37]. 

The proof of extreme amenability of the group Iso(U) applies the technique of 

concentration of measure, and by way of proof we establish the following gen- 

eralization of a result due to Glasner and Furstenberg-Weiss: the group of all 

measurable maps from a non-atomic Lebesgue measure space to an amenable 

locally compact group G, equipped with the topology of convergence in measure 

(known as the Hartman-Mycielski extension of G, [25]), has the fixed point on 

compacta property (Theorem 2.2). Another component of the proof is the follow- 

ing, apparently new, result (Theorem 3.2): every group of isometries of a metric 

space can be approximated in a certain weak sense with finite groups of isome- 

tries of suitable metric spaces. In the second-countable case the result can be 

interpreted as a statement on approximation of topological groups: every Polish 

group is the limit of a net of finite groups in the space of all closed subgroups of 

the group Iso(U) (Corollary 4.9). 

Our methods lead to a new proof of the fixed point on compacta property 

for the infinite orthogonal groups with the strong topology, which does not use 

advanced geometric tools such as Gromov's isoperimetric inequality. (Subsection 

4.5.) 

In order to extend the result on extreme amenability to the groups of isometries 

Iso(U) of generalized Urysohn metric spaces U, we recast the fixed point on 

compacta property of the full isometry group of a sufficiently homogeneous metric 

space X as a Ramsey-type result for the space X itself (Theorem 5.9). As a 

corollary, if two metric spaces, X and Y, are both w-homogeneous and have, 

up to isometry, the same finite metric subspaces, then the groups Iso(X) and 

Iso(Y) have the fixed point on compacta property (or otherwise) simultaneously 

(Theorem 6.5). 

As another application of this technique, we show that  the groups of isome- 

tries of the universal discrete metric spaces [19] do not have the fixed point on 

compacta property (Theorem 6.9). 

The equivalence between the fixed point on compacta property of isometry 

groups and Ramsey-type results for metric spaces can be exploited in the other 

direction as well, and thus we deduce some 'approximate' Ramsey-type results 

for both spherical and Euclidean metric spaces (Subsection 6.3). 

ACKNOWLEDGEMENT: The investigation grew out of stimulating discussions 
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2. C o n c e n t r a t i o n  o f  m e a s u r e  in H a r t m a n - M y c i e l s k i  groups  

2.1. Our starting point is the following result, mentioned in the Introduction. 

THEOREM 2.1 (Glasner [12]; Furstenberg-B. Weiss, unpublished): The group 

L1 (X, U(1)) of all measurable maps from a nonatomic Lebesgue space to the circle 

rotation group, equipped with the Ll-metric, has the fixed point on compacta 

property. 

On two occasions in this article, including the proof of one of our main 
theorems, we will invoke suitable modifications of the above result, and it seems 

appropriate to state a far-reaching generalization of Theorem 2.1, even if we shall 

never use its full power. 

In the above form the result does not extend too far: suffice to consider the 

additive group of the Banach space L1 (X) = L1 (X, R), with its wealth of contin- 

uous characters. However, it is not a particular metric on the group but rather 

the topology it generates that matters, and the topology generated by the L1- 

metric on the group L(X, T) is that of convergence in measure. (This is true of 

every Lp-metric, 1 _< p < co, on the same group.) This observation leads us to 

state the following generalization of Glasner Furstenber~Weiss theorem. 

THEOREM 2.2: Let G be an amenable locally compact group and let X be a 

non-atomic Lebesgue measure space. Then the group Lo(X, G) of all measurable 
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maps from X to G, equipped with the topology of convergence in measure, has 

the fixed point on compacta property (is extremely amenable). 

Remark 2.3: The topological groups of the form L0(X, G), where the subscript 

'0' stands for the topology of convergence in measure, had apparently been first 

considered by Hartman and Mycielski [25], who had observed that Lo(X,G) 

contains G as a topological subgroup (formed by all constant functions) and 

is path-connected and locally path-connected. Later it was shown by Keesling 

[28] that if G is separable metrizable, then the Hartman-Mycielski extension 

Lo(X, G) is homeomorphic to the separable Hilbert space. The correspondence 

G ~-+ L0(X, G) determines a (covariant) functor from the category of all topolog- 

ical groups and continuous homomorphisms to itself, and Theorem 2.2 says that 

the Hartman-Mycielski functor transforms amenable locally compact groups into 

extremely amenable topological groups. 

The following particular case (where G = ]R or C) seems to be of interest. 

COROLLARY 2.4: The [underlying topological group of] the topological vector 

space Lo( X ) of all measurable functions on a non-atomic Lebesgue measure space 

X,  equipped with the topology of convergence in measure, has the fixed point on 

compacta property. 

Remark 2.5: The above result is similar to the one from [26] where the space 

Lo(X) was equipped with the topology of convergence in a suitably chosen, the 

so-called pathological submeasure (a subadditive set function) on X. As a re- 

sult, the abelian topological group from [26] has an even stronger property than 

just extreme amenability: it admits no strongly continuous unitary representa- 

tions. Notice that each of the groups of the form L0(X, G) from Theorem 2.2 

admits a faithful strongly continuous unitary representation in the Hilbert space 

L2(X, L2(G)). (This extends an observation made in [12] for G = U(1).) 

Our proof of Theorem 2.2 relies, similarly to that  of Theorem 2.1, on the 

technique of concentration of measure on high-dimensionM structures. However, 

the concept of a L~vy group [20, 12] becomes too narrow and has to be somewhat 

extended. We believe that  this extension goes sufficiently far to be of interest on 

its own. (Though we find it useful, to replace metrics with uniform structures, 

this is not what our generalization is about.) 

2.2. If X = (X, lgz) is a uniform space, then the uniform (induced) topology 

on X gives rise to a Borel structure and thus one can speak of Borel measures on 
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X. The following is a straightforward adaptation of the by now classical concept 

[20, 34, 33, 41, 19, 12]. 

Definition 2.6: Let (#~) be a net of probability measures on a uniform space 

(X,l,~x). Say that the net (Pa) has the L6vy  c o n c e n t r a t i o n  p r o p e r t y ,  or 

simply c o n c e n t r a t e s  (in X),  if whenever As _C X are Borel subsets with the 

property 

lim inf#~(A~) > 0, 

one has for every entourage of the diagonal V E b/x 

#~(V[A~]) -~ 1. 

(Here, as usual, V[A] = (x  C X ] 3a C A, (x,a) E V} denotes the V- 

neighbourhood of A.) 

LEMMA 2.7: Let f:  X -+ Y be a uniformly continuous map between two uniform 

spaces, and let (#a) be a net of  Borel measures on X .  I f  (#~) concentrates, then 

the net ( f . (#a)  ) of push-forward measures on Y concentrates as well. 

Let G be a group of uniform isomorphisms of a uniform space X. A compact- 

ification K of X is called u n i f o r m  if the corresponding mapping i: X -+ K is 

uniformly continuous, and e q u i v a r i a n t  (in full, G-equ iva r i an t )  if G acts on 

K by homeomorphisms in such a way that i commutes with the action. The 

maximal uniform compactification of a uniform space X, known as the S a m u e l  

c o m p a c t i f i c a t i o n  of X and which we denote by aX,  is the Gelfand space of the 

commutative C*-algebra formed by all bounded uniformly continuous complex- 

valued functions on X. The Samuel compactification a X  is equivariant no matter  

what the acting group G is, because every uniform homeomorphism X -+ X ex- 

tends to a self-homeomorphism ~rX -+ a X  due to universality. 

It is convenient to state explicitely the following result, which is in essence 

folk's knowledge in theory of topological transformation groups. (Cf. [33, 48] 

etc.) 

THEOREM 2.8: Let G be a group of  uniform isomorphisms of a uniform space 

X .  The following conditions are equivalent. 

(i) Every G-equivariant uniform compactification of  X has a fixed point. 

(ii) For every bounded uniformly continuous function f from X to a finite- 

dimensional Euclidean space, every c > 0 and every finite collection 

g l , g 2 , . . . , g ~  C G, there is an x E X with I f (x)  - f (gix) l  < c for all 

i = 1 , 2 , . . . , n .  
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(iii) For every finite cover "y of X ,  every V G gtx and every finite collection 

gl, g2 , . - . ,  gn E G, there is an A E 7 such that 

f t  

N v[g A] ¢ o. 
i = 1  

Proof." (i) => (ii): notice that  every bounded uniformly continuous function 

extends over the Samuel compactification. 

(ii) => (iii): choose a bounded uniformly continuous pseudometric d on X 

subordinated to V (that is, d(x, y) < 1 => (x, y) e V) and apply the condition 

(ii) to the function from X to Rl'~r whose components are distance functions 

x ~+ d(x, A), A E % with e = 1. 

(iii) =:> (i): see [39], Proposition 2.1 (which is, in its turn, an adaptation of an 

argument from Section 4 in [32]). | 

Remark 2.9: At this point we do not concern ourselves with a topology on the 

acting group G, and it may well happen that if G is a topological group acting on 

the uniform space X continuously, the extension of the action to an equivariant 

compactification of X is discontinuous. As an example, consider as G the unitary 

group U(/2) with the strong topology, and as X the unit sphere S °° in 12 with 

the metric uniformity. The action of U(12) on the Samuel compactification of the 

sphere is continuous if U(/2) is equipped with the uniform operator topology, but 

not the strong one. 

A subset B of a uniform space X is called u n i f o r m l y  o p e n  if B = VIAl for 

some A C_ X and V E/gx.  

Definition 2.10: Let us say that two nets of probability measures, (#a) and 

(us), on the same uniform space X are a s y m p t o t i c a l l y  p r o x i m a l  if for every 

uniformly open subset B one has 

limsup I # a ( B ) -  ua(B)[ < 1. 
ot 

Remark 2.11: Two nets as above will in particular be asymptotically proximal 

if liminf~(#~, A u~)(X) > 0. For instance, this is so if the restrictions of #~ and 

us coincide on some Borel subsets (A~,), whose measures are uniformly (in a) 

bounded away from zero. 

The following apparently subsumes all the previously known results of the type 

(concentration of measure) ~ (existence of a fixed point) [20, 32, aa, 12, 301. 
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THEOREM 2.12: Let a group G act on a uniform space X = (X,  LI) by uniform 

isomorphisms. Suppose there is a net (#~) of  probability measures on X such 

that 

- (lza) concentrates in X ,  

- for every g E G the nets ( /~)  and (g * #~) are asymptotically proximal. 

Then every equivariant uniform compactification of the G-space X has a fixed 

point. 

Remark  2.13: The second condition is a rather weak invariance-type property 

for a family of measures, and its advantage is being easier to verify. If  we require 

all measures #~ to be e v e n t u a l l y  i n v a r i a n t  ( that is, for every g E G one has 

~a = g • #~ for sufficiently large a)  and compactly-supported, then we recover 

the concept of a L~vy transformation group from [32]. The above stated theorem 

allows for a unified approach to a number of previously known results, such 

as a link between amenability of unitary representations and the concentration 

property of unit spheres [39], which we will not be addressing here. 

Proo~ Let 7 be a finite cover of X,  let V E L/x, and let g l , . . . ,g ,~  E G be 

arbitrary. Find an entourage of the diagonal W E/4x with W o W C_ V. At least 

one element of 7, denote it by A, satisfies the property 

l imsup#~(A)  >_ 171-1. 
c~ 

By proceeding to a subnet if necessary, we may assume without loss in generality 

that  

l i m i n f / ~ ( A )  _> 13'1-1. 

In view of the assumed concentration property of the measures (#~), 

li~n,~(W[A]) = 1, 

and by force of the second assumption, one has for every i 

l iminf(gi • #~)(W[A]) > 0. 
c~ 

By Lemma 2.7, each of the nets of measures (g~. #~), i = 1, 2 , . . . ,  n concentrates, 

and consequently 

l~l(gi * #a)(W[W[A]]) = 1. 

Since W o W C_ V, one has 

l im#,(giV[A])  = 1. 
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It is therefore possible to choose an a so large that each of the numbers 

#~(glY[A]), . . . ,  #~(gnY[A]) is greater than 1 - 1/n. It follows that the inter- 

section of all the translates of VIAl by elements gi, i = 1, 2 , . . . ,  n is non-empty, 

and application of Theorem 2.8 finishes the proof. I 

2.3. Recall that the r igh t  u n i f o r m  s t r u c t u r e  of a topological group, b/¢(G), 

has as a basis the entourages of diagonal of the form 

= { ( 5 , v )  • v × v l x v  -1 • v } ,  

where V runs over a neighbourhood basis of e in G. The Samuel compactification 

of the right uniform space Ge -- (G, b/¢(G)) is a compact G-space, known as the 

g r e a t e s t  a m b i t  of G and denoted by S(G). (Cf. [42, 5, 1, 38].) The greatest 

ambit possesses a distinguished point (the image of identity of G, which we will 

still denote e), whose orbit is everywhere dense in it. This object has the following 

universal property: whenever X is a compact G-space and xo • X,  there is a 

unique morphism of G-spaces from S(G) to X taking e to x0. It follows that  a 

topological group G has the fixed point on compacta property if and only if there 

is a fixed point in the greatest ambit $(G). 

COROLLARY 2.14: Let G be a topological group. Suppose there is a net (#~) of 

probability measures on G such that, with respect to the right uniform structure 

Ur(G), 
- (#~) concentrates, 

- for every g • G the nets (#~) and (g * #a) are asymptotically proximal. 

Then G has the fixed point on compacta property. 

Remark 2.15: A topological group G is called a L~vy g r o u p  if it contains a 

family of compact subgroups, directed by inclusion and having everywhere dense 

union, such that  the corresponding normalized Haar measures, #~, concentrate 

in Gt.  This concept was used as means to deduce the existence of fixed points for 

group actions on compacta by Gromov and Milman [20]; see also [12, 38]. L6vy 

groups satisfy a stronger property than the the second assumption of Corollary 

2.14: the measures p~ are eventually invariant. 

2.4. Let X = (X,/4x) be a uniform space. Denote by L(]I,X) the collection 

of all Borel-measurable maps f :  ]I --+ X equipped with the uniform structure of 

convergence in measure. The standard basic entourages of diagonal are of the 

form 

IV, e] := {( f ,g)  e L ( L X )  × L(I~,X):/~{x • ~: ( f (x) ,g(x))  ~ V} < ~}, 
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where V C/4x and ~ > 0. This uniformity induces a topology on L(L X), whose 

standard basic neighbourhoods of a given function f :  1: --+ X are 

[V,:, f] := {g e L(I:,X): #{x e ]h (f(x),g(x)) ~ V} < e}, 

where V C t /x  and ~ > 0. (Notice that  the knowledge of topology on X alone 

does not suffice: to talk of convergence in measure, it is necessary to have a 

uniform structure, for instance, one defined by a metric on X, or else the unique 

compatible uniform structure in case X is compact.) 

If G is a Hausdorff topological group, then so is L(]I, G). In this case, the 

standard neighbourhoods of identity are of the form 

[V,e] := {g e L(]I,X):#{x e l[: g(x) ¢ V} < ~}, 

where V is a neighbourhood of eG in G and : > 0. 

Now suppose that  X = (X, p) is a metric space. Let us agree on the canonical 

choice of the metric generating the uniformity of convergence in measure (and 

the corresponding topology) on L0(li, X),  as follows: if A > 0 is an arbitrary (but 

fixed) number, then set 

(2.1) me~(f ,g)  = inf{: > 0 ] # { x  e ][: p(f(x),g(x)) > ~} < %~}. 

Such metrics for different A > 0 are all equivalent. (Cf. [19], p. 115.) 

Detlnition 2.16: An action of a topological group G on a uniform space X = 

(X, b/x) by uniform isomorphisms is called b o u n d e d  [51] (or m o t i o n  equ icon-  

t i n u o u s  [14]) if for every entourage U E /4x one can find a neighbourhood 

W s e a  such that  for every x C X, 

W . z c_ U[x ] .  

Remarks 2.17: 1. Every bounded action is continuous. [If g C G, x E X, and 

a neighbourhood O ~ g- x are arbitrary, select an U E b/x with (U o U)[x] C_ O 

and a neighbourhood W ~ ea with W .  y C_ U[y] for all y e X. Then W .  U[x] C_ 
U~[x] c o.] 

2. The converse is not true. [For example, the standard action of the unitary 

group U(/2) with the strong operator topology on the unit sphere S °° equipped 

with the metric uniformity is continuous, but not bounded. This action becomes 

bounded if U(/2) is equipped with the uniform operator topology.] 

3. However, a continuous action of a topological group G on a compact space 

X (equipped with the unique compatible uniformity) is always bounded. This 

fact is well-known (and easily verified). 
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4. The left action of a topological group G on the right uniform space Gr is 

bounded, but in general the same is not true of the left action of G on the left 
uniform space of G. 

LEMMA 2.18: Ira topological group G acts by isometries on a metric space X,  

then the topological group Lo(~, G) acts by isometries on the metric space L(L X) 
equipped with the metric (2.1), where the action is defined pointwise: 

(g. f)(x) := g(x). f(x) ,  g E L ( L G ) ,  f E L(]I,X). 

If  in addition the action of G on X is bounded (for example X is compact), then 
the action of Lo(~, G) on Lo(L X) is continuous. 

Proof." The first s tatement  is self-evident. In order to establish the second claim, 

it is now enough to prove that  for every f E L0(~, X)  the orbit map  

L0(L G) 9 g ~-~ g .  f E Lo(LX)  

is continuous. Let e > 0 be any. Using the boundedness of the original action, 

choose a W 3 ec  such that  for all x E X and w E W, p(w • x, x) < e. The set 

g[W, Ae/2] is a neighbourhood of g in L0(I, G), and if gl E g[W, Ac/2] is arbitrary, 

then for every x E X apart  from a set of measure <_ A¢ one has p(g(x).f(x), gl(x). 
f(x)) = p( f (x ) ,w(x) ,  f(x)) < ¢, where w(x) - g(x)-lgl(x) E W for every 

x E X apart  from a set of measure Ae/2. This means that  me~(gl • f ,  g .  f )  < e, 

establishing the continuity of the orbit map. I 

2.5. PROOF OF THEOREM 2.2. Fix a parametrizat ion of the non-atomic 

Lebesgue measure space X,  that  is, a measure space isomorphism ~ ++ X.  The 

required net of measures on L(][, G) will be indexed by the set of all pairs of 

the form (n, F) ,  where n E N+ and F C_ G is a finite subset, directed as fol- 

lows: (nl,  F1) -~ (n2, F2) iff nl _< n2 and F1 C_ F2. Fix a left-invariant Haar  

measure u on G. For every n, F as above use the F~lner condition and the as- 

sumed amenability of the locally compact group G to choose a compact subset 

K = Kn,F C G with the property 

u(gKAK)  1 < -  
u(K) n 

for each g E F.  Now let K n denote the set of all functions in Lo(LG) taking 

values in K and constant on every interval of the form [i/n, (i + 1)/n),  i = 

0, 1 , . . . ,  n - 1. Topologically, K "  can be identified with the n-th power of the 
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compact set K.  Denote by Un,F the product measure (ulK) n normalized to one 

and viewed as a probability measure on L0(], G) with support K n. It remains 

to verify that  the net of probability measures (un,f) on the topological group 

L0(ll~ G) satisfies the two assumptions of Corollary 2.14. 

(i) The net of measures (un,y) concentrates in L0(l~, G). 

The following general and powerful result, due to Talagrand ([41], p. 76 and 

Prop. 2.1.1), extends the particular case of finite spaces belonging to Schechtman 

[40, 34]. Let Y = (]I, Z, #) denote a probability space. Then the product mea- 

sures #®n, n E N, on yn concentrate, as n --4 oo, with respect to the [uniform 

structure generated by the] normalized Hamming distance on y n ,  given by 

P(f,g) = 1~{ i I f i  ~ gi}. 

Moreover, the (Gaussian) bounds for the rate of concentration are independent 

of a particular Y, cf. loco citato. In other words, there is a family of functions 

c~n: [0, 1] --+ [0, ½] (of the form c~n(e) = Ciexp(-C2~na)), independent of Y and 

# and such that,  whenever a measurable A C Y'~ has the property #®n(A) > i 
one has for every c > 0 

,®~(A~) _> 1 -~n(~), 

where A~ = {y E Y~: p(y, A) < ~}. 
In view of Lemma 2.7, it is therefore enough to show that  the uniform structure 

induced on K n by the Hamming-type distance p is finer than the restriction of the 

right uniform structure//¢ (L(X, G)) (which of course coincides with the unique 

compatible uniformity on K'~). Let V be a neighbourhood of unity in G and let 

E > 0. Let f ,  g E K '~ be arbitrary and such that  p(f, g) < E. Then clearly 

#({x E X [ f(x)g(x) -1 ¢ Y)) ~#({x  • X I f(x) ¢ g(x))) 

= l- I{ i  I £ # g,}l 
n 

(2.2) =p(f,g) < ¢, 

that is, (f ,  g) • [V; ¢], establishing the claim. 

(ii) For every g • L0(ll, G), the nets (v~,y) and (g * Vn,F) are asymptotically 

proximal. 

Let g • Lo(X, G). By approximating g with simple functions, one can assume 

without loss in generality that  the set F -- { g l , . . . ,  gk) of values o fg  is finite, and 

that  for sufficiently large n, the function g is constant on each [i/n, (i + 1)/n).  

Since for every g~ one has v(K,~,F Ngi. Kn,F) > (1 -- 1/n)v(Kn,f), it follows that,  
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whenever n >> k, 

V n F ( K n ~ F N g i ' K , ~ , F  ) > 1--  --+ - .  

To finish the proof, notice that  the restrictions of the measures Un,F - -  ( V [ K )  n 

k k and g * Pn,F to Kn, F N gi " Kn,F coincide, and use Remark 2.11. | 

3. A p p r o x i m a t i o n  b y  f in i te  g r o u p s  

3.1. The aim of this Section is to show that  every (topological) group can be 

approximated, albeit in a very weak sense, by finite groups. By combining the 

approximation result with the extreme amenability of Hartman-Mycielski  groups, 

we shall later deduce the fixed point on compacta property for the isometry group 

Iso(U) of the complete separable Urysohn metric space. 

We will state the approximation result in a few equivalent forms. Let us say 

that  a metric space X is i n d e x e d  by a set I if there is a surjection f x :  I --~ X .  

We will call the pair (X, f x )  an i n d e x e d  m e t r i c  space .  Let us say that  two 

metric spaces, X and Y, indexed with the same set I are e - i s o m e t r i c  if for every 

i , j  E I the distances d x ( f x ( i ) ,  f x ( J ) )  and d v ( f y ( i ) ,  f v ( j ) )  differ by at most e. 

LEMMA 3.1: I f  metric spaces X and Y indexed by a set I are e-isometric, then 

X and Y can be isometrically embedded  into a metric space Z in such a way 

that  for each i E I, d z ( f x ( i ) , f y ( i ) )  <_ e. 

Proof: Make the set-theoretic disjoint union Z = X U Y into a weighted graph, 

by joining a pair (x, y) with an edge in any of the following cases: 

- x, y E X,  with weight p x ( x ,  y); 

- x , y  E Y ,  with weight p y ( x , y ) ;  

- for some i E I ,  x = f x ( i )  and y = f y ( i ) ,  with weight ¢. 

The weighted graph Z equipped with the path  metric clearly contains X and Y 

as metric subspaces and satisfies the required property. | 

THEOREM 3.2: Let  gl, • •. ,  gn be a finite family  o f  isometries of a metric space X .  

Then for every e > 0 and every finite collection x l ,  . . . , Xm o f  elements  o f  X there 

exist a finite metric space J~, elements  5cl , . . . ,  Xm o f f ( ,  and isometries g l , . . - ,  gn 

o f f (  such that  the indexed metric  spaces {gi" xj: i = 1, 2 , . . . ,  n , j  = 1, 2 , . . . ,  m} 

and {[?i " xj: i = 1, 2 , . . . ,  n , j  = 1, 2 , . . . ,  m} are e-isometric. 

Proof: We will perform the proof in several simple steps. 
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1. By first rescaling the metric P x  on X and then replacing it with min{px, 1} 

if necessary, we can assume without loss in generality that the values of P x  are 

bounded by 1. 

2. Without loss in generality, we may also assume that  X supports the struc- 

ture of an abelian group equipped with a bi-invariant metric, and gi's are metric- 

preserving group automorphisms. For instance, one can replace X with the free 

abelian group A ( X )  on X, and extend the metric from X to a maximal invariant 

metric on A ( X )  bounded by 1 (the so-called G r a e v  m e t r i c ,  cf. [15, 46]); then 

every isometry of X uniquely extends to an isometric automorphism of the metric 

group A ( X ) .  

3. Let G denote a group of isometrics of X generated by g l , . . . , g n .  The 

semidirect product group G ~< A ( X )  is equipped with the bi-invariant metric p 

defined by 
1, if g ¢ gt, 

P((9, a), (g ' ,a ' ) )  = d(a ,a ' ) ,  otherwise. 

[The bi-invariance of p is established through a direct calculation using the mul- 

tiplication rule in the semidirect product in question: 

(g, a ) (h ,  b) = (gh, a + g . b).] 

As usual, we will identify G with a subgroup of the semidirect product under the 

mapping G 3 g ~-~ (g, 0), and similarly A ( X )  is identified with a normal subgroup 

of the semidirect product under the mapping A ( X )  9 x ~-+ (ea ,  x) .  Under such 

conventions, the automorphism of A ( X )  determined by each g E G is just g itself 

considered as an isometric isomorphism of A(X): 

Va • A ( X ) ,  gag -1  - ( g , O ) ( e , a ) ( g , O )  -1  

=(9, g" a)(g -1, 0) 

= ( e , g . a )  

=-g • a. 

In particular, for every i, j one has 

gix jg~  -1 = gi " x j .  

4. Let Fm+n denote the free group on m + n  generators denoted by the symbols 

gl , g2, • • . , gn, Xl  , X2, • • . , Xm. 

Denote by 7r: Fm+n ~ G ~< A ( X )  the homomorphism sending each generator g~ 

to the corresponding element of G and each generator xj to the corresponding 
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element of X c A(X) .  Pull the metric p back from G D< A(X)  to Fm+n by letting 

y)  = 

The pseudometric p' is bi-invariant on Fro+n, though need not be a metric. By 

force of the remark at the end of step 3, the indexed pseudometric spaces 

{g~.xj  ] i = 1 , 2 , . . . , n , j  = 1 , 2 , . . . , m }  C_ (X, px) C (A(X) ,p)  

and 

{gixjg71 [ i  = 1 , 2 , . . . , n , j  = 1 , 2 , . . . , m }  C (Fm+n,p') 

are isometric (and thus are both metric spaces). 

5. By adding to p' an arbitrary bi-invariant metric on Fm+n normalized so as 

to only slightly change the values of distances between pairs of elements g~xjg~ -1 
(for instance, let us agree on the discrete metric taking its values in {0, ~/2})), we 

can assume without loss in generality that p' is a bi-invariant metric on Fro+n, 
while the indexed metric spaces { g i ' x j  I i = 1 , 2 , . . . , n , j  = 1 , 2 , . . . , m }  and 

{g~xjg~ -1 I i = 1, 2 , . . . ,  n , j  = 1, 2 , . . . ,  m} are c/2-isometric. 

6. Now replace the metric p' with the m a x i m a l  among all bi-invariant metrics 

on Fm+n that coincide with p' on the set F(m3)+n of all words of reduced length 

<_3. 

To prove the existence of such a metric, say d, denote by A4 the family of all 

bi-invariant metrics on F,~+~ whose restriction to F~)+n coincides with p'. Since 

A4 ~ p', the family A4 is non-empty. For any two elements w, v E Fm+,~ and 

an arbitrary q E A4, the value ¢(w, v) is bounded from above uniformly in ~ by 

any sum of the form )--~ p'(ak, bk), where w = ~ k  ak and v = )-~k bk are two 

representations having the same length and such that ak, bk E F(m3)n. Now set 

d(v, w) ---- sup q(v, w). 
~EM 

The supremum on the r.h.s, is finite, and has all the required properties. 

7. Notice that for w, v C Fm+,~ 

d(w,v) = inf E p ' ( a k ,  bk), 
k 

where the infimum is taken over all possible representations of the above sort 

w = ~-~k ak, v = ~ k  bk, having the same length and such that  ak, bk E F(m3)n. 
[Proof: the infimum on the r.h.s, is a bi-invariant pseudometric, which is greater 

than or equal to d, and whose restriction to F~)n  coincides with the restriction 
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of p'. We conclude: this infimum is in fact a metric, and it must coincide with 

d.] 
8. Denote by (i the smallest positive value of the distance p' (or, equivalently, 

d) between any two elements of the finite set F ~ ) n .  It follows from (7) that 

for every word x E F,~+~, the value of d(w, e) is at least [l(w)/3]~, where l(w) 
denotes the reduced length of w. 

9. Being free, the group Fm+n is residually finite, that is, admits a separating 

family of homomorphisms into finite groups. (Cf. e.g. [21], Ch. 7, exercise 5.) 

Therefore, for every natural k there exists a normal subgroup Nk such that the 

factor-group Fm+n/Nk is finite and the only word of reduced length _< k contained 

in Nk is identity. Denote by w: Fm+n ~ Fm+n/Nk the factor-homomorphism 

and equip Fm+n/Nk with the factor-distance of d by letting 

d'(g, h) = inf{d(w, v) I w(w) -- g, w(v) = h}. 

10. It is immediate that d' is a bi-invariant pseudometric. Moreover, for k _> 3 

it is a metric: d'(g, h) _> (f >_ c/2 whenever g ~ h, cf. step 8. 

_ p(3) and x ,y  E Nk be 11. Now assume that k > 3[5 -1 ] + 4 .  Let w,v E .m+~ 

arbitrary, x ~ y. Then d(wx, vy) = d(e, X- iT- Ivy)  > 1, because w-iv  C Nk and 

therefore l ( x - lw- lvy )  > 3[(f -1] and (8) applies. Therefore, d'(w(w),w(v)) = 
p(3) is an isometry. d(w, v) and the restriction of w t o .  m+~ 

12. Now set ) (  -- F,~+u/Nk and 37j : ~:U(Xj). For every i = 1 , . . . ,  n, the inner 

automorphism of the finite metric group )(  determined by w(gi) is an isometry, 

because the metric is bi-invariant. Denote this isometry by ~j. The indexed 

metric spaces (gixjg~ -1) and (w(gi)~jw(g~)-l), i = 1 , . . . , n , j  = 1 , . . . , m  are 

isometric by force of the concluding remark in (11). Taking into account (5), we 

finally conclude that  the indexed metric spaces (~j.xi) and (gj "xi) are e-isometric, 

as required. | 

Remark 3.3: A careful analysis of the proof shows the existence of an absolute 

constant C = C(m, n, E) > 0 such that the cardinality of the finite metric space 

in the statement of Theorem 3.2 does not exceed C. 

3.2. Let G be a group. One can introduce a natural topology on the set of 

(equivalence classes) of all isometric actions of G on metric spaces (whose size 

has to be bounded from above; for instance, it is natural to consider actions 

on all metric spaces X of density character not exceeding the cardinality of G). 

This topology is similar to the Fell topology on the set of (equivalence classes) 

of unitary representations of a group (cf. [9] or [24], p. 12), and is even closer to 
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the topology introduced by Exel and Loring on the set of representations of a 

C*-algebra [8]. 

A neighbourhood of an action T of G by isometries on a metric space X is 

determined by the following set of data: a finite subset F = { g l , . . . , g n }  C_ G, 

an c > 0, and a finite collection X ~ = {x l , - . . ,Xm}  C_ X .  Say that  an action 

of G on a metric space Y by isometries is in V[F; X;~](T), if for some finite 

collection Y'  -- {Yl,. --,  Yn} C Y the metric spaces {gj .x i}  and {9j.yi}, naturally 

indexed by {1 , . . . ,  m} × {1 , . . . ,  n}, are e-isometric. Our Theorem 3.2 can be now 

reformulated as follows. 

COROLLARY 3.4: Every action of a free group F on an arbitrary metric space 

by isometries is the limit of a net of  actions of F by isometries on/ in i te  metric 

spaces. 

Remark 3.5: It  is worth noting that  approximation results of the above type 

are not unknown. For instance, as a corollary of a criterion by Exel and Loring 

[EL] and the known residual finite-dimensionality of the group C*-algebras of 

free groups [GM], every representation of such a C*-algebra in a Hilbert space is 

approximated in the Exel-Loring topology by finite-dimensional representations. 

To cast the above result as one on approximation of topological groups, we need 

to remind the concept of the Urysohn universal metric space. 

4. Ury sohn  metric spaces and their g r o u p s  o f  isometries  

We begin this Section with a summary of some known concepts and results from 

theory of Urysohn metric spaces (Subsections 4.1 and 4.2), after which we state a 

result on approximation of Polish topological groups by finite groups (Subsection 

4.3), establish the fixed point on compacta property of the group of isometries 

of the complete separable Urysohn space (Subsection 4.4), and finally give a new 

proof of the fixed point on compacta propety for the infinite orthogonal groups 

(Subsection 4.5). 

4.1. URYSOHN METRIC SPACES. A metric space X is called a (gene ra l i zed )  

U r y s o h n  s p a c e  if it has the following property: whenever A C_ X is a finite 

metric subspace of X and A t = A U {a} is an arbi t r tary one-point metric space 

extension of A, the embedding A ~ X extends to an isometric embedding A t ~-+ 

X.  (Cf. [43, 44, 27, 50, 47, 10] and [19], 3.11+.) 
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There is only one, up to an isometry, complete separable Urysohn metric space, 

which we denote by U. This space contains an isometric copy of every separa- 

ble metric space. Moreover, if X is a separable metric space and A C_ X is a 

finite subspace, then every isometric embedding A ~ U extends to an isometric 

embedding X ~-~ U. 

A metric space X is called n - h o m o g e n e o u s ,  where n is a natural number, if 

every isometry between two subspaces of X containing at most n elements each 

extends to an isometry of X onto itself. If X is n-homogeneous for every natural 

n, then it is said to be w-homogeneous .  The complete separable Urysohn space 

U is w-homogeneous and moreover enjoys the stronger property: every isometry 

between two compact subspaces of X extends to an isometry of X onto itself. 

Other well-known metric spaces having the same higher homogeneity property 

are the unit sphere S of the infinite-dimensional Hilbert space ?-/and the infinite- 

dimensional Hilbert space 7-/itself ([3], Ch. IV, §38). 

There are some obvious modifications of the concept of Urysohn metric space. 

For example, one can consider only metric spaces of diameter not exceeding a 

given positive number d. The corresponding complete separable Urysohn space 

will be denoted Ud. Another possibility is to consider Urysohn metric spaces in 

the class of metric spaces whose metrics only take values in the lattice aZ, E > 0. 

The corresponding object will be denoted U ~x (respectively, U~ x). 

Certainly, the above are not the only classes of metric spaces for which the 

Urysohn-type universal objects exist. For instance, the Urysohn metric spaces for 

the class of spherical metric spaces of a fixed diameter in the sense of Blumenthal 

[3] are spheres in spaces/2(F). The infinite-dimensional Hilbert spaces play the 

role of Urysohn metric spaces for the class of metric spaces embeddable into 

Hilbert spaces. 

The following construction of the Urysohn space belongs to Kat~tov [27]. Let 

us say, following [27, 47, 10], that a 1-Lipschitz real-valued function f on a metric 

space X is s u p p o r t e d  on,  or else c o n t r o l l e d  by,  a metric subspace Y C X if 

for every x E X 

f (x )  = inf{p(x, y) + f(y) :  y C Y}. 

Put  otherwise, f is the largest 1-Lipschitz function on X having the prescribed 

restriction to Y. For instance, every distance function x ~ p(x, Xo) from a point 

x0 is controlled by a singleton, {x0}. 

Let X be an arbitrary metric space. Denote by E(X) the collection of all 

functions f :  X --~ li~ controlled by some finite subset of X (depending on the 
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function) and having the property 

(4.1) If( x ) - f(Y)l <- dx (x , y )  <_ f (x)  + f(y)  

for all x, y E X. If equipped with the supremum metric, E(X) becomes a metric 

space of the same density character as X, containing an isometric copy of X 

under the Kuratowski embedding: 

X ~ x ~ [ d x : X g y ~ + p ( x , y )  E R ] E E ( X ) .  

Besides, the space E(X) contains all one-point metric extensions of every finite 

metric subspace of X. 

One can form an increasing sequence of iterated extensions of the form 

X , E ( X ) , E  2 = E ( E ( X ) ) , . . . , E n ( Z )  = E ( E n - I ( X ) ) , . . . ,  

take the union, E °~ (X), and form the metric completion of it, ] ~  (X). The latter 

space is a generalized Urysohn space. If the metric space X is separable, then so 

is I ~ ( X ) ,  and thus it is isometric to U. If X is non-separable, then the resulting 

metric space I~ °° (X) need not be w-homogeneous. 

If X is a separable metric space with diam(X) < d and throughout the above 

construction one replaces E(X) with the metric space Ed(X) formed by all func- 

tions f satisfying (4.1), bounded by d, and controlled by finite subspaces in a 
suitably modified sense, then the resulting metric space I~°°(X) is isometric to 

4.2. GROUPS OF ISOMETRIES. A remarkable feature of the above construc- 
tion, discovered by Uspenskij, is that it enables one to keep track of groups of 

isometrics. 

Given an arbitrary metric space X, the topology of pointwise convergence 

and the compact-open topology on the group Iso(X) of all isometries of X onto 

itself coincide and turn Iso(X) into a Hausdorff topological group. The basic 

neighbourhoods of identity in this topology are of the form 

V[F;e] = {g E Iso(X): Vx E F, dx(g(x) ,x)  < e}, 

where F C_ X is finite and ~ > 0. If X is separable (and thus second-countable), 

then so is Iso(X). 
Notice that in general the action of Iso(X) on the metric space X is not 

bounded (cf. Remark 2.17.2), while the action of Iso(X) by translations on the 

space of bounded uniformly continuous (or Lipschitz) functions on X, equipped 

with the supremum norm, is not, in general, continuous. 



Vol. 127, 2 0 0 2  RAMSEY-MILMAN PHENOMENON 337 

However, the isometric action of the group Iso(X) on the metric space of all 

1-Lipschitz functions on X controlled by finite subsets happens to be continuous. 

Indeed, if a function f E E ( X )  is controlled by a finite Y C_ X, then the trans- 
lation g o f does not differ from f by more than e at any point of X, provided 

g C V[Y;e]. Consequently, the canonical representation of Iso(X) in E(X) by 
isometrics defines a topological group embedding Iso(X) ¢-+ Iso(E(X)). 

Iterating this process countably many times, one obtains a a continuous action 

of Iso(X) by isometrics on E~(X) ,  which in its turn extends to a continuous 

action of Iso(X) on the metric completion ] ~ ( X )  ~ U. 

We adopt terminology suggested in [47] and say that a metric subspace Y is 

g - e m b e d d e d  into a metric space X if there exists an embedding of topological 

groups e: Iso(Y) ¢-+ Iso(X) with the property that for every h E Iso(Y) the 

isometry e(h): X -+ X is an extension of h. The above argument establishes the 

following result. 

PROPOSITION 4.1 (Uspenskij [45]): Every separable metric space X can be g- 

embedded into the complete separable Urysohn metric space U. 

Since every [second-countable] topological group G embeds into the isometry 

group of a suitable [separable] metric space [42], we arrive at the following. 

THEOREM 4.2 (Uspenskij [45]): The topological group Iso(U) is the universal 

second-countable topological group. 

(Cf. also [19], 3.11.~+.) 

Since every isometry between two compact subspaces of U can be extended to 
an isometry of U onto itself, we obtain the following useful corollary of Proposition 
4.1. 

COROLLARY 4.3: Each isometric embedding of a compact metric space into U 

is a g-embedding. 

The question of the existence of universal topological groups of a given un- 

countable weight ~- (in fact, of any uncountable weight T) remains open. However, 

recently Uspenskij has established the following result. 

THEOREM 4.4 ([47]): Every topological group G embeds, as a topological sub- 

group, into the group of isometrics Iso(X) of a suitable w-homogeneous Urysohn 

metric space X of  the same weight as G. 

The construction rather resembles the proof of Theorem 4.2, but in order to 

achieve w-homogeneity of the union space, one alternates between the Kat~tov 
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metric extension E(.) and the 'homogenization' extension, H(-), which forms the 

nontriviai technical core of the proof and is described in the following theorem. 

THEOREM 4.5 (Uspenskij [47]): Every metric space X g-embeds into an w- 

homogeneous metric space H ( X )  of the same weight as X. 

4.3. APPROXIMATION OF TOPOLOGICAL GROUPS. Now we can state yet an- 

other reformulation of the approximation Theorem 3.2. 

THEOREM 4.6: For every finite collection of isometries gl, • • •, gn of the complete 

separable Urysohn metric space U and every neighbourhood V of  identity in 

Iso(U) there are isometries h i , . . . ,  hn 6 Iso(U) generating a finite subgroup and 

such that h~g~ -1 6 V, i = 1 , . . . , n .  

Proof: One can assume that V = V[X;e], where X = {Xl, . . . ,Xm} C U and 

> 0. Using Theorem 3.2, choose a finite metric space X, elements x l , . . - ,  5~m 

of-~,  and isometries g l , . - - ,  gn of X such that the naturally indexed finite metric 

spaces 

and 

A = {g~-i  .xj [i = 1 , 2 , . . . , n , j  = 1 , 2 , . . . , m }  

B = {[1~ -1 .~j  l i = 1 , 2 , . . . , n , j  = 1 , 2 , . . . , m }  

are e/2-isometric. 

Using Lemma 3.1, isometrically embed A and )(  into a finite metric space 

Z in such a way that dg(g~l(xi),[~[l(~i)) <_ e/2 for all i , j .  Now extend the 

embedding A ¢-~ U to an isometric embedding Z ~ U. According to Corollary 

4.3, the (finite) group Iso(-~) simultaneously extends to a group of isometries of 

U. Denote the extension of the isometry ~i by hi. One has for all i, j :  

d(xi, hjg21(xi)) = d([l~-l(xi), g[ l (x i ) )  <_ e/2 < e, 

and the proof is finished. | 

Let G be a group and let X be a metric space. Every action of G on X 

by isometries can be viewed as a homomorphism ~-: G ~ Iso(X). Equip the 

set Horn(G, Iso(X)) of all such homomorphisms with the topology of pointwise 

convergence on G, that is, the one induced from the Tychonoff product Iso(X) a. 

Since, in its turn, the topological space Iso(X) is a subspace of the Tychonoff 

product X x ,  one concludes that Horn(G, Iso(X)) is a topological subspace of the 

Tychonoff product X a x x .  In this form, the identification of the collection of all 

actions T: G x X -+ X with a subspace of X Gxz  becomes obvious. 
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Call an action p e r i o d i c  if it factors through an action of a finite group. One 

can reformulate Theorem 4.6 as follows. 

COROLLARY 4.7: Let F be a free group. The set of periodic actions o f f  on the 

Urysohn metric space U is everywhere dense in the set of all actions. 

Let Fo~ denote the free group of countably infinite rank. The mapping asso- 

ciating to an action T of F ~  on U the closure of ~-(Fo~) in Iso(U) is a surjection 

from Horn(G, Iso(X)) onto the space £(Iso(U)) of all closed subgroups of Iso(U). 

Equip the latter space with the corresponding quotient topology. The topology 

so defined satisfies the axiom To. 

COROLLARY 4.8: The set of finite subgroups is everywhere dense in the topo- 

logical space £(Iso(U)). 

This leads to an approximation result for Polish topological groups. 

COROLLARY 4.9: Let G be a Polish topological group. Then under every isomor- 

phic embedding into Iso(U) the group G is the limit of a net of finite subgroups. 

Remark 4.10: At the first sight, the above may seem to contradict the general 

principle (in particular espoused and explained by Vershik in [49]) according to 

which approximability of an (infinite) group G by finite groups is essentially 

equivalent to amenability of G. In fact, our results are in perfect agreement with 

this principle in that the approximating groups come from 'without'  the group 

G and thus form an approximation not to G itself, but to a suitable topological 

group extension of G, which indeed turns out to be amenable (and even extremely 

amenable). 

4.4 .  THE FIXED POINT PROPERTY OF THE GROUP Iso(U) .  Theorems 4.6 and 

2.2 enable us to deduce the fixed point on compacta property for the group of 

isometries of the complete separable Urysohn space U. 

THEOREM 4.11: The group Iso(U) of all isometries of the complete separable 

Urysohn space U, equipped with the standard (pointwise = compact-open) topol- 

ogy, is extremely amenable (has the fixed point on compacta property). 

Proof: Let the group Iso(U) act continuously on a compact space K. We will 

show that every finite collection of elements of Iso(U) has a common fixed point 

in K,  from which the result follows by an obvious compactness argument. Fix 

an arbitrary such collection, gl . . . .  , gn E Iso(U). 

Let U E L/K be an arbitrary element of the unique compatible uniform structure 

on K. Without loss in generality, assume that  U is closed as a subset of K × K 
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(and consequently compact). Using the boundedness of the action of Iso(X) on 

K,  choose a finite X C_ U and an ~ > 0 such that, whenever g E V = V[X; c], 

one has (g. ~, t~) E V for all t~ E K. 

By Theorem 4.6, there are isometries h i , . . . ,  hn C Iso(U) generating a finite 
h -1 subgroup H and such that  ~gi E V ,  i = l , . . . , n .  

Let ) (  be a finite H-invariant subset of U containing X. The iterated Kat~tov 

extension ]~(L0(][ ,  X)) contains ) (  as a subspace made up of all constant func- 

tions and is isometric to U, and since )~ is finite, an isometry between the two 

spaces can be chosen so as to extend the canonical embedding of ) (  into U. Thus 

we obtain a chain of g-embeddings 

2( C L0(][, ~') C U. 

The group Lo(L H) acts on Lo([,-~) continuously and isometrically (Lemma 

2.18), and this action canonically extends to a continuous isometric action of the 

same group on the space I ~ ( L o ( [ ,  X)) - U. Thus we obtain a continuous group 

monomorphism j:  Lo(]l, H)  -+ Iso(U) with the property that for every h E H one 

has j(h)I ~ = hi2. 
Composing j with the action Iso(U) -~ Homeo(K), we obtain a continuous 

action of Lo(L H) on K.  By force of Theorem 2.2, n0(][, H)  has a common fixed 

point in K,  say t~. In particular, ~ is fixed under the elements j ( h l ) , . . .  , j (hn)  C 

Iso(U), where we identify elements of H with constants in L0(I, H). 

For all x E X and i = 1, 2 , . . . ,  n, one has 

d( j (h i ) - l (x ) ,  g; l (x) )  = d(h~l(x),  g[l(x))  < 

for all i and x C X, implying that j (h i )g[  1 E V for i = 1, 2 , . . . ,  n. Consequently 

and by the choice of V = V[X;~], 

(gi~, ~) --- (g~,j(hi)t~) ~ (git~, (j(hi)g~4) • (gi~)) e U 

for all i. Denote by Fu the (non-empty) set of all points x E K with the property 

(gix, x) C U for all i. Since U is closed, so is Fu _C K. If U1 C U2, then Fu1 C Fu2. 
It means that {Fg} is a centred system of closed subsets of the compact space 

K and therefore has a common point, which is clearly fixed under g l , . . - , g n ,  as 

required. I 

Remark 4.12: The same argument verbatim also establishes the fixed point on 

compacta property of the topological group Iso(Ud) of isometries of the complete 

separable universal Urysohn space of finite diameter d. 
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4 . 5 .  A NEW PROOF OF THE FIXED POINT ON COMPACTA PROPERTY OF THE 

INFINITE ORTHOGONAL GROUP. The above proof can be easily modified so as to 

result in a new proof of extreme amenability of the orthogonal group 0(7/)  of an 

infinite-dimensional Hilbert space with the strong operator topology. This proof 

does not rely on such advanced tools from geometry as Gromov's isoperimetric 

inequality for groups SO(n). 

The following belongs to folklore. 

LEMMA 4.13: Let X be a metric subspace of the unit sphere S o f a  real Hilbert 

space 7/. Suppose a topological group G acts on X continuously by isometries. 

Then the action of G extends to a strongly continuous action of G by isometries 

on the sphere S (that is, to a strongly continuous orthogonal representation of G 

in 7/). Put otherwise, every metric subspace of the unit sphere S o f a  real Hilbert 

space is g-embedded into S. If the linear span of X is dense in 7/, the extension 

is unique. 

Proof: Since for every x, y C X the value of the inner product is uniquely 

determined by the Euclidean distance between the elements, 

(x ,y )  = 1 -  px(x,y) 2, 

there is only one way to turn the linear span lin(X) into a pre-Hilbert space so 

as to induce the given metric on X. The corresponding completion K: = lin(X) 

is isometrically isomorphic to the closed linear span of X in 7/, that  is, 7/ --- 

E @ E ±. As another consequence of the same observation, every isometry of X 

lifts to a unique orthogonal transformation of/C. The resulting homomorphism 

~r: G --~ O(K:) is continuous if the latter group is equipped with the topology of 

simple convergence on X or, which is the same, on lin(X). On the groups of 

isometries of metric spaces the topology of simple convergence on an everywhere 

dense subset coincides with the topology of simple convergence on the entire 

space. Consequently, the extended orthogonal representation 7r of G in ~ is 

str°ngly c°ntinu°us" It remains t°  extend 7r t°  a representati°n ( ~r0 Idlc±0 ) °f 

G in 7/. The uniqueness statement is obvious. | 

Here is an outline of the alternative proof of extreme amenability of 0(7-/)8. We 

will be only considering the separable case 7 / = / 2 ;  the extension to non-separable 

case is straightforward. 

Every finite collection gl, g2 , . - . ,  g,~ of elements of O(12), viewed as isometries 

of the unit sphere S, can be approximated (in the strong operator topology) 
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by a collection of elements ' ' gl, g2, . -- ,  gn of a finite-dimensional orthogonal sub- 

group in the following sense: for a given natural m and an e > 0, one has 

I[gi(ej) -g~(ej)[[ < ~ for a l l / - -  1 , 2 , . . . , n ,  j = 1 , 2 , . . . , m ,  where g~ 6 0 ( N ) ,  ej 

denote the standard basic vectors, and the rank N is sufficiently large. 

According to Lemma 2.18, the topological group L0(~, O(N)) acts continuously 

by isometries on the metric space L2(][, sN), equipped with the/2-metric.  (The 

topology induced on L(I[, S N) by/2-metric is still that  of convergence in measure, 

because S N is compact.) The metric space L2(L S N) is spherical of diameter one 

and thus can be embedded into S as a metric superspace of S g. Using Lemma 

4.13, we obtain a chain of continuous monomorphisms of topological groups 

O(N) < L0(i, O(N)) < Iso(L2(L sN)) < O(/2). 

According to Theorem 2.2, the second topological group on the left is extremely 

amenable. It follows that the orthogonal operators g~, g~ , . . . ,  g" have a common 

fixed point in every compact space upon which O(12) acts continuously. Now the 

proof is accomplished in the same way as in Theorem 4.11. 

5. Ramsey-type theorems for metric spaces vs Lp.c .  property 

5.1. RAMSEY-DVORETZKY-MILMAN PROPERTY. In order to extend the result 

about fixed point on compacta property of the isometry group Iso(U) beyond the 

separable case, we will obtain a new characterization of extremely amenable 

groups of isometries in terms of a Ramsey-type property of the metric spaces X. 

The following is an adaptation from [18], Sect. 9.3. 

Definition 5.1: Let G be a group of uniform isomorphisms of a uniform space 

X. We will say that the pair (G, X) has the R a m s e y - D v o r e t z k y - M i l m a n  

property if for every bounded uniformly continuous function f from X to a 

finite-dimensional Euclidean space, every c > 0, and every compact K C_ X,  the 

function f is c-constant on a suitable translate of K,  that is, there is a g E G 

such that 

Osc(f  I gK) < ~. 

Equivalently, 'compact'  can be replaced with 'finite.' 

We defer two master examples (Ex. 5.6 and 5.8) in order to precede them by a 

few simple preliminary results. The following is established by pulling back the 

function f from Y to X. 
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LEMMA 5.2: Let G be a group, acting by uniform isomorphisms on the uniform 

spaces X and Y, and let f :  X -+ Y be an equivariant uniformly continuous map 

with everywhere dense range. If  the pair (G, X)  has the Ramsey Dvoretzky- 
Milman property, then so does (G, Y). 

Denote by/4~ the totally bounded replica of the uniform structure L/x on X, 

that  is, the coarsest uniform structure preserving the uniform continuity of every 

bounded uniformly continuous function on X. Basic entourages of the diagonal 

for b/~c are of the form 

{(g,  h) • x × X: I f (x)  - f (Y)l  < 

where f :  X -+ R N is bounded uniformly continuous, N • N. 

The following reformulation of the R-D-M property is immediate. 

PROPOSITION 5.3: A pair (G, X)  has the Ramsey Dvoretzky Milman property 

if and only if  for every compact (equivalently: finite) K C_ X and every entourage 

V • bt~: there is a g • G with gK being V-small: gK × gK C_ V. 

PROPOSITION 5.4: Let X = (X, l t z )  be a uniform space. A basis of entourages 

for the totally bounded replica 14~c ofblx is given by all finite covers of the form 

{V[A]: A • 7}, where 7 is an arbitrary finite cover of X and V • 14x. 

Proo~ The claim consists of two parts: first, that  all sets of the form 

0 V[A] x V[A], 7 finite, V • / / x  
AE7 

are elements of/d~,  and second, that  each enourage from/4~c contains a set of 

the above type. 

(1) Given 7, V, and A as above, choose a bounded uniformly continuous pseu- 

dometric d on X such that  (d(x, y) < 1) ==> ((x, y) • V), and introduce a bounded 

uniformly continuous function f from X to the Euclidean space ]RbTt with each 

component fA, A • 7, defined by 

X ~ x ~ fA(X) := d(x, A) • R. 

The set {(x,y) • X2: If(x) - f(Y)l < 1} is an element o f / ~  and a subset of 

UAe7 V[A] × V[A]. 
(2) Let W • / 4 ~  be arbitrary. Choose a bounded uniformly continuous function 

f :  X ~ R g and an c > 0 such that {(x,y)  • X2: If(x) - f(Y)t < E} C W. 
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Partit ion the image f (X )  into finitely many pieces of diameter _< c/2 each and 

let ~/be the family of preimages of those pieces under f .  Define 

V = {(x,y) E X2: If(x) - f(Y)l < e/2} E bt~ C btx. 

Clearly, uAe-y VIA] x VIAl C_ W. | 

As an immediate corollary, one obtains the following. 

PROPOSITION 5.5: A pair (G, X) has the Ramsey-Dvoretzky-Milman property 
if and only if for every compact (equivalently: tlnite) K C_ X,  every finite cover 
"y of X,  and every entourage V E blx, there is a g E G such that gK is contained 
in the V-neighbourhood of some A E % 

Here is the first major example. 

Example 5.6: Let F be an infinite set, and let n be a natural number. Choose 

as G the group Sr  / of all finite permutations of F, and as X the set F (n) of all 

n-subsets of F, equipped with the finest (discrete) uniformity. Using Proposi- 

tion 5.5, one can easily see that  the pair (F('~), Sr  f) has the Ramsey-Dvoretzky- 

Milman property, which statement is indeed equivalent to the finite Ramsey 

theorem. 

Recall that  the basic entourages for the left uniform structure LI~(G) on a 

topological group G are of the form 

V~ = {(9, h) E G × G: 9-1h E V}, 

where V is a neighbourhood of identity in G. If d is a left invariant continuous 

pseudometric on G and ~ > 0, then the set U[d; ~] -- {(x, y) E X2: d(x, y) < ~} 
is an element of b/~ (G). Since for every neighbourhood of identity V there is a 

bounded left invariant continuous pseudometric d on G with (d(x, ec) < 1) 

(x E V) and consequently Vn D_ V[d; 1], it follows that  the left uniform struc- 

ture on a topological group is determined by left invariant bounded continuous 

pseudometrics. 

If d is a left invariant continuous pseudometric on G, then 

Hd = {x E G: d(x, ec) = 0} 

forms a closed subgroup of G, and the pseudometric d induces a continuous left- 

invariant metric d on the factor-space G/Hd by the formula d(xH, yH) := d(x, y). 
The canonical factor-map 7r: G -+ (G/Ha, el) is uniformly continuous. Notice that  

in general both the topology and the uniform structure induced by d are coarser 
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than the factor-topology and the left uniform structure on G/Hd. We will denote 

the G-space G/Hd equipped with the left invariant metric d by G/d, which is 

consistent with the notation sometimes used in set-theoretic topology: in our 

situation, G/d is the metric space canonically associated to the pseudometric 

space (G, d). 

The following result (which grew out of V.V. Uspenskij's conjecture) reveals 

the link between the Ramsey-Dvoretzky Milman property and the existence of 

fixed points. 

THEOREM 5.7: For a topological group G, the following are equivalent. 

(i) G has the fixed point on compacta property. 

(ii) The pair (G, G~) has the Ramsey-Dvoretzky-Milman property. 

(iii) For every left-invariant continuous pseudometric d on G, the pair (G, G/d) 
has the Ramsey-Dvoretzky Milman property. 

(iv) Whenever G acts continuously and transitively by isometrics on a metric 
space X,  the pair (G, X) has the Ramsey-Dvoretzky-Milman property. 

(v) For some family D of bounded continuous left invariant pseudometrics 
d, generating the topology of G, each pair (G, G/d) has the Ramsey- 
Dvoretzky Milman property. 

Proof: (i) ~ (ii): according to Theorem 2.8, the fixed point on compacta prop- 

erty of a topological group G is equivalent to the following: for every bounded 

right uniformly continuous function f on G taking values in a finite-dimensional 

Euclidean space, every finite collection of elements gl, g2 , . . . ,  gn • G, and every 

> 0, there is an x • G such that 

[ f ( x ) - f ( g i x ) l < c  for a l l i : l , 2 , . . . , n .  

The mirror image of the above statement applies to left uniformly continuous 

functions and calls for the existence of an x • G with the property 

[f(x) - f(xgi)] < e for all i. 

This amounts to the Ramsey-Dvoretzky-Milman property for the pair (G, G~) 

relative to the left action (with K = {ca, gl, g2,.. . ,  gn)). 

(ii) ==~ (iii): as the canonical map G ~ G/d is uniformly continuous and 

G-equivariant, Lemma 5.2 applies. 

(iii) =v (iv): Let dx denote the invariant metric on X. Fix an arbitrary point 

x0 • X. The formula d(g, h) := dx(gxo, hxo) defines a left invariant continuous 
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pseudometric on G, and the map G ~ g ~ gxo C X factors through to a 

G-equivariant isometric isomorphism between G/d  and X. 

(iv) ~ (v): Trivial, as G acts on each space G/d  continuously and transitively 

by isometries. 

(v) => (ii): Suppose we are given a finite subset F C_ G, a finite cover ~/of G, 

and a basic element V~ of the left uniformity G% where V is a neighbourhood of 

identity in G. Choose a bounded left invariant continuous pseudometric d E D 

with the property (d(x, ee)  < 1) => (x E V). The sets 7r(A), A E % where 

7r: G --> G/d  is the factor-map, form a finite cover of G/d, and by assumption 

there is a g C G such that gTr(F) is entirely contained in the 1-neighbourhood of 

some ~r(A), A E y. Denote, as before, Hd = {g C G: d(g, ec) = 0}. The value of d 

is independent on the choice of representatives in left cosets: d(xhl,  yh2) = d(x, y) 

for a l l x ,  y C G, hi, h2 E Hd. Let f C F be any. Since d(g~r(f),Tr(a)) < 1 for 

some a E A, one has d(gf,  a) < 1, that is, gF is contained in V~[A] = AV,  and 

the Ramsey Dvoretzky-Milman property of (G, G~) is thus verified. I 

Example 5.8: The second major example is given by the pair consisting of 

the full unitary group U(?-/) of an infinite-dimensional Hilbert space 74 and the 

unit sphere Sn  equipped with the Euclidean distance. The Ramsey-Dvoretzky- 

Milman property of this pair follows from Theorem 5.7 and the extreme amenabil- 

ity of U(?-/)8 (cf. Subsection 4.5). In fact, a direct proof of this property does not 

require the extreme amenability of the unitary group, and such was the original 

proof by Milman [31] (who then used the R-D-M property to give a new proof of 

Dvoretzky theorem on almost spherical sections of convex bodies), cf. also [18], 

Sect. 9.3. 

For sufficiently homogeneous spaces and their full groups of isometries 

Theorem 5.7 assumes a combinatorial form of a Ramsey-type result for metric 

spaces somewhat in the spirit of [30] or [29], but in an 'approximate' implemen- 

tation. We proceed to examine this connection now. 

5.2 .  RAMSEY-TYPE PROPERTIES OF METRIC SPACES. Let X be a metric space, 

and let F be a finite metric subspace of X. The stabilizer of F,  

StF = {g e Iso(X): gz = x for each x E F},  

is a closed subgroup of Iso(X). Denote by X ~ F  the family of all isometric 

embeddings of F into X, equipped with the natural action of Iso(X) on the left: 

X +JF ~ j ~ g o j C X ~F .  
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The supremum metric on X ~ F ,  given by 

dsup(i,j) -- max{d( i (x ) , j ( x ) ) :  x C F},  

is Iso(X)-invariant. Denote by dF the pull-back of the metric ds~p to Iso(X): 

dF(g, h) := ds~p(giF, hiE), 

where iF: F ~-+ X is the canonical embedding. Left-invariant pseudometrics of 

the form dR, where F runs over all finite subspaces of X,  generate the usual 

topology of pointwise convergence on Iso(X).  

If X is IFI-homogeneous, the following establishes an isomorphism of Iso(X)-  

sets: 

(5.1) G /  StF ~ gS tF  ~-~ [glF: F -+ gF] C X +JR. 

In the combinatorial spirit, we will refer to [finite] partitions of a metric space X 

as co lou r ings  of X [using finitely many colours]. A subset Y C_ X is m o n o c h r o -  

m a t i c  if Y C_ X for some A C 7, and m o n o c h r o m a t i c  u p  to  a n  e > 0 if Y is 

contained in the e-neighbourhood of some A c 7- 

A direct application of Theorem 5.7 now results in the following. 

THEOREM 5.9: Let X be an w-homogeneous metric space. The following condi- 

tions are equivalent. 

(i) The full group of isometries Iso(X) with the pointwise topology is extremely 

amenable. 

(ii) Let F C_ X be a finite metric space, and let X ~ F  be coloured using finitely 

many colours. Then for every finite metric subspace G C_ X and every 

e > 0 there is an isometric copy of G, G I C X ,  such that all isometric 

embeddings F ~-~ X that factor through G ~ are monochromatic up to e. 

Remark  5.10: There is a natural surjection from X ~ F  onto the collection X (F) 

of all subspaces of X isometric to F,  as the latter space is obtained from the 

former one by factoring out the group of distance-preserving permutat ions of F: 

X (F) ~ X+-~F/Iso(F). 

In particular, if the metric space F is rigid (for example, if no two distances 

between different pairs of points are the same), then the spaces X (F) and X ~ F  

can be identified. In general, however, the distinction between the two spaces has 

to be maintained, and as we shall see (Theorem 6.9), some groups of isometries of 

w-homogeneous metric spaces fail to have the fixed point on compacta  property 

namely due to the fact that  the two spaces X (F) and X ~ F  are different. 
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Remark 5.11: Theorem 5.9 provides at one's disposal a rather versatile tool. 

The main application in this article will be to establish the extreme amenabil- 

ity of groups of isometrics of w-homogeneous generalized Urysohn spaces. The 

result shall also be used to demonstrate  that  some groups of isometrics are not 

extremely amenable. And finally, one can turn Theorem 5.9 around in order to 

deduce Ramsey-type results for metric spaces from the known results on extreme 

amenability of various topological groups established by other means. The next 

Section contains examples of applications of each sort. 

6. A p p l i c a t i o n s  

6.1. EXTREME AMENABILITY OF THE GROUPS Iso(U). We want to formalize 

the content of the condition (ii) of Theorem 5.9, as follows. 

Definition 6.1: Let F and G be finite metric spaces, let m E N+, and let c > 0. 

Denote by R(F, G, m, ¢) the following property of a metric space X: 

X E R(F, G, m, c) ¢=> for every colouring of the set X ~ F  of all isometric embed- 

dings of F into X with <_ m colours, there is an isometric embedding j: G ~-+ X 

such that all embeddings of F into X that factor through j are monochromatic 

up to c. 

Say that  a metric space X has property R if X E R(F, G, m, ¢) for all finite 

metric spaces F, G embeddable into X,  for all m E N, and all e > 0. 

Remark 6.2: Now Theorem 5.9 can be reformulated as follows: an w-transitive 

metric space X has property R if and only if the topological group Iso(X) is 

extremely amenable. 

PROPOSITION 6.3: Let F and G be ~nite metric spaces, let X be a metric space 

containing a copy o fF ,  let m be a natural number, and let ~ > O. The following 

are equivalent. 

(i) x E R(F, 
(ii) There is a tinite subspace Z C_ X containing a copy of F such that Z E 

R(F, G, m, ¢). 

Proof: (i) ~ (ii): assume -~(ii), that  is, no finite subspace Z of X containing 

a copy of F is in R(F, G, m, ~). Denote by Z the collection of all finite metric 

subspaces Z C_ X with Z +'F ~ ~. By assumption, Z =~ 0. 

Then for every Z E Z the set Z ~ F  admits a colouring with m colours, which 

we will view as a function fz:  Z ~ F  -+ {1, 2 , . . . ,  m}, in such a way that  the 

following holds: 
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(*) for every isometric embedding i: G ~-+ Z and every colour k = 1, 2 , . . . ,  m 

there is an isometric embedding jk: F ~ G such that  the ¢-neighbourhood of 

i o jk in Z ~ f  contains no elements of colour k. 

The system Z is directed by inclusion, and the collection of intervals [K, c~) = 

{Z E Z: K C_ Z}, where K C_ X is finite, is a filter on Z,  which we will 

denote by Jr. Since X can be assumed infinite (otherwise there is nothing to 

prove), .T extends to a free ultrafilter A on Z. For every j C X ~ g ,  one has 

[{j(F)}, ~ )  e 9 r C A, and therefore exactly one of the sets {Z • Z: f z ( j )  = i}, 

1 < i < m is in A. Consequently, the function 

f ( j )  = li~a f z  (J) 

determines a colouring of X +JF with m colours. 

Now let ~: G +-~ X be an arbi trary isometric embedding, and let k C 

{1, 2 , . . . ,  m} be a colour. For every Z G [~(G), oc) choose, using (*), an isometric 

embedding jz,k: F ~ G with no element in the c-neighbourhood of Lojz,k, formed 

in Z ~ F ,  being of fz-colour k. For every x C F define jk(x)  = l imhjz ,k(x)  e G. 

(The metric space G is finite.) This jk is an isometric embedding of F into G with 

the property that  the e-neighbourhood of e o jk formed in all of X ~ F  contains 

no elements of colour k. Thus, ~(i) is established. 

(ii) ~ (i): evident. | 

COROLLARY 6.4: Let X and Y be two metric spaces having, up to isometry, the 

same finite metric subspaces. I f  X has property R, then so does Y .  

THEOREM 6.5: Let X and Y be two w-homogeneous metric spaces, having, up 

to isometry, the same finite metric subspaces. Then the topological group Iso(X) 

has the fixed point on compacta property if  and only if  the topological group 

Iso(Y) does. 

Proo~ Combine Theorem 5.9 and Corollary 6.4. | 

We can finally deduce from Theorem 6.5 and Theorem 4.11 the following result, 

which is the raison d'etre of the article. 

THEOREM 6.6: Let U be a generalized Urysohn metric space. I f  U is w- 

homogeneous, then the group Iso(U) has the fixed point on compacta property. 

Modulo Uspenskij 's Theorem 4.4, the above Theorem implies the following. 



350 V. PESTOV Isr. J. Math. 

COROLLARY 6.7: Every topological group embeds, as a topological subgroup, 
into an extremely amenable topological group, that is, a topological group with 

the fixed point on compacta property. 

Even the following appears to be a new result. 

COROLLARY 6.8: Every topological group embeds, as a topological subgroup, 

into an amenable topological group. 

6.2 .  GROUPS OF ISOMETRIES OF DISCRETE URYSOHN SPACES. Here we will 

demonstrate how Theorem 5.9 can be used to show the absence of the fixed 

point on compacta property in the case where the w-homogeneous metric space 

in question fails the 'strong' version of Ramsey-type property. 

THEOREM 6.9: The group of isometries of the discrete Urysohn metric space 

U ~z does not have the fixed point on compacta property. 

Proof: Denote by {a, b} the two-element metric space with d(a, b) = ~. Parti t ion 

the set (uez) ~{a'b} of all isometric embeddings of {a, b} into U ~z into two disjoint 

subsets A, B in such a way that whenever an injection i: {a, b} ~ (U ~z) is in 

A, the 'flip' injection i o a2 is in B, and vice versa. Since the space U ~z is ~- 

discrete, the ~-neighbourhood of a subset X is X itself, and 'monochromatic up 

to ~' means in this context simply 'monochromatic. '  One concludes that,  with 

respect to the colouring {A, B}, no pair of injections of the form Y = {i, i o a2} 

is monochromatic up to E, and thus the metric space (ucz) ~{a,bt, upon which 

the group Iso(U ~z) acts transitively and continuously by isometries, fails the 

Ramsey-Dviretzky Milman property. | 

Remark 6.10: The same result holds for discrete Urysohn spaces of bounded 

diameter, U~ z. In particular, letting ~ = 1 = d, we obtain a result proved by the 

present author in [37], Th. 6.5: the group of permutations Soo of an infinite set, 

equipped with the pointwise topology, is not extremely amenable. (This result 

seems to answer in the negative an old question by Furstenberg discussed in [20].) 

Notice also that the groups of isometries of infinite, w-homogeneous metric 

spaces need not be extremely amenable. 

The countable metric space U~z, equipped with the {0,1}-valued metric, 

actually satisfies a 'weaker' version of the Ramsey result, namely the one for 

finite subspaces, rather than for their injections, and this result is the well-known 

Finite Ramsey Theorem. (Cfi Ex. 5.6.) However, as we have just seen, the group 



Vol. 127, 2 0 0 2  RAMSEY-MILMAN PHENOMENON 351 

fails the 'stronger '  version for embeddings of finite spaces! The latter circum- 

stance destroys the extreme amenability of Soo. 

Finally notice that  the topological group Soo is amenable, because it is ap- 

proximated from within by an increasing chain of finite groups of permutat ions 

whose union is everywhere dense. 

6.3. DEDUCING RAMSEY-TYPE THEOREMS FOR METRIC SPACES. By force of 

Theorem 5.9, the immediate corollary - -  and in fact an equivalent form - -  of 

the fixed point on compacta  property of the group Iso(U) (Theorem 4.11) is the 

following Ramsey-type result. 

COROLLARY 6.11: Let F be a finite metric space, and let all isometric embed- 

dings of  F into U be coloured using finitely many  colours. Then for every finite 

metric space G and every c > 0 there is an isometric copy G' C U of  G such that 

all isometric embeddings of  F into U that  factor through G are monochromatic 

up to c. 

By restricting ourselves to considering only Iso(F)-invariant collections of 

embeddings of F into U, we arrive at the following. 

COROLLARY 6.12: Let F be a finite metric space. Let all subspaees of  the 

Urysohn space U isometric to F be coloured using finitely many colours. Then 

for every finite metric space G and every c > 0 there is a subspace G' c_ U 

isometric to G whose subspaces isometric to F are monochromatic up to c. 

Applications to spherical spaces are probably more interesting. (Cf. comments 

in [30] at the bo t tom of p. 460). The unit sphere of the infinite-dimensional 

Hilbert space H is an w-homogeneous metric space, and the orthogonal group of 

with the strong operator topology (that is, the topology of simple convergence 

on the sphere) is extremely amenable [20]. As a corollary, we obtain Ramsey-type 

results for the Hilbert sphere. 

COR.OLLARY 6.13: Let F be a finite metric subspace of  the unit sphere S ~ in 

an infinite-dimensional Hilbert space. Let all isometric embeddings o f f  into S °° 

be coloured using finitely many colours. Then for every finite metric subspace G 

of  the sphere and every c > 0 there is an isometric copy G' C S °° of  G such that 

all isometric embeddings of  F into G' are monochromatic up to c. 

COROLLARY 6.14: Let F be a fn i t e  metric subspace of  the unit sphere S o° in 

an infinite-dimensional Hilbert space. Let all subspaces of  S °° isometric to F 

be coloured using finitely many  colours. Then for every finite subspace Y of  
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the sphere and every e > 0 there is a subspace yr  c_ $ ~  isometric to Y whose 

subspaces isometric to F are monochromatic up to e. 

To establish similar corollaries for metric subspaces of the infinite-dimensional 

Hilbert space, we need the following result. Notice that amenability of the group 

Iso(7/) of affine isometries of a Hilbert space [24], p. 47. 

THEOREM 6.15: The group Iso(7/) of atOne isometries of  a Hilbert space 7/ of  

infinite dimension is extremely amenable. 

Proof.'. The topological group Iso(7/) is isomorphic to the semidirect product 

0(7/)  D< 7 / o f  the full orthogonal group 0(7/)  equipped with the strong operator 

topology and the additive group of the Hilbert space 7/ with the usual norm 

topology, formed with respect to the natural action of 0(7/)  on 7 / b y  rotations. 

(Cf. [24].) Suppose Iso(7/) acts continuously on a compact space g .  Since the 

group 0(7/)  (identified with a subgroup of Iso(7/)) is extremely amenable ([20]; cf. 

also Subsection 4.5), it has a fixed point ~ E K.  The mapping 7 / ~  x ~-~ x .n  E K,  

where 7 / i s  viewed as a closed normal subgroup of Iso(7/), is Iso(7/)-equivariant, 

continuous, and has everywhere dense image in K,  and thus K is an equivariant 

Iso(7/)-compactification of the homogeneous factor-space 7/---- Iso(7/)/O(7/). 

Let ~: K -+ ]R N be an arbitrary continuous function, N E N. Its pull-back, 

f ( x )  =: ~(x-a), to 7/is right uniformly continuous. (A standard result in abstract 

topological dynamics.) If e > 0 is arbitrary, then for some neighbourhood V = 

Y[F; 5] of identity in Iso(7/) one has If(g(0)) - f(h(O)) I < e whenever gh -1 E Y.  

Without loss in generality and slightly perturbing the points of F if necessary, 

one can assume that  elements of F are affinely independent. Let x, y E 7 / b e  two 

arbitrary elements with the property Iix - zlI = IIY - z]] for each z E F.  Find 

an isometric copy of F,  say F ' ,  such that F '  U {0} is isometric to F U {x} (or, 

equivalently, to F U {y}). There is an isometry g of 7 / taking F 'U  {0} to F U {x}, 

and an isometry h taking F '  U {0} to F U  {y}. In particular, gh - l lF  ---- IdF E V, 

and consequently If(x) - f(Y)l < e. Thus, the function f is e-constant on every 

affine sphere of codimension IF[ having the form 

( x  E n :  IIx - zll = r z , z  E F }  = srz ( z ) .  
z E F  

Another way to say it is that,  up to E, the function f ( x )  only depends on the 

collection of distances {lix - z i i : z  E F}.  

Now let g l , . . . ,  gn E Iso(7/) be an arbitrary collection of isometrics. By slightly 

perturbing them if necessary, one can assume without loss in generality that  all 



Vol. 127, 2002 RAMSEY-MILMAN PHENOMENON 353 

the vectors z and g [ l ( z ) ,  z C F,  i = 1, 2 , . . . ,  n, are affinely independent. Because 

of infinite-dimensionality of 74, every element x of some affine subspace of 7-/of 

finite codimension has the property that  for every i = 1, 2 , . . . ,  n and each z G F,  

one has IIx - g~-l(z)l I = I[x - zll. Fix any such x. Then the values of f at the 

points x, gl(x),  g 2 ( x ) , . . . ,  g,~(x) differ by less than 6. Now we can apply Theorem 

2.8 to conclude that K has a fixed point for Iso(74). II 

COROLLARY 6.16: Let  F be a finite metr ic  subspace o f  the infinite-dimensional 

Hilbert  space 74. Let  all isometric embeddings  of  F into 74 be coloured using 

f initely m a n y  colours. Then for every finite collection Y o f  such embeddings  

and every  e > 0 there is a collection of  embeddings  y i  congruent to Y and 

monochromat ic  up to ¢. 

COROLLARY 6.17: Let  F be a finite metr ic  subspace o f  an infinite-dimensional 

Hilbert  space 7-l. I f  all subspaces of  74 isometric to F are eoloured using f initely 

m a n y  colours, then for every  finite subspace G o f  74 and every e > 0 there is 

an isometric copy G' o f  G in 74 such that  all subspaces o f  G'  isometric to F are 

monochromat ic  up to e. 

7. C o n c l u d i n g  r e m a r k s  

In this article we have investigated some relationships inside the following 

triangle: 
I extreme amenability] 

] concentration I Ramsey 

Deeper explorations of the Ramsey-Milman phenomenon in topological 

transformation groups require discovering situations in which a 'phase 

transition' between concentration and dissipation occurs in families of topological 

groups/dynamical systems. (Cf. [4].) It could be, for example, that a solution to 

Glasner's problem on the existence of a minimally almost periodic group topology 

on the integers without the fixed point on compacta property [12] lies namely in 

this direction. 

In connection with the Banach Mazur problem (cf. [6]), it could be worth 

investigating the fixed point on compacta property for the groups of isometrics 

of separable Banach spaces admitting a transitive norm. 

Finally, we do not know if the results of Section 6 can be put in direct connec- 

tion with the Euclidean Ramsey theory [16]. 
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